Cargando…
Approach for the Design of Covalent Protein Kinase Inhibitors via Focused Deep Generative Modeling
Deep machine learning is expanding the conceptual framework and capacity of computational compound design, enabling new applications through generative modeling. We have explored the systematic design of covalent protein kinase inhibitors by learning from kinome-relevant chemical space, followed by...
Autores principales: | Yoshimori, Atsushi, Miljković, Filip, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778003/ https://www.ncbi.nlm.nih.gov/pubmed/35056884 http://dx.doi.org/10.3390/molecules27020570 |
Ejemplares similares
-
Adapting the DeepSARM approach for dual-target ligand design
por: Yoshimori, Atsushi, et al.
Publicado: (2021) -
Design of MMP-1 inhibitors via SAR transfer and experimental validation
por: Umedera, Kohei, et al.
Publicado: (2022) -
Systematic Analysis of Covalent and Allosteric Protein Kinase Inhibitors
por: Xerxa, Elena, et al.
Publicado: (2023) -
Reconciling Selectivity Trends from a Comprehensive Kinase Inhibitor Profiling Campaign
with Known Activity Data
por: Miljković, Filip, et al.
Publicado: (2018) -
Assessing the information content of structural and protein–ligand interaction representations for the classification of kinase inhibitor binding modes via machine learning and active learning
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2020)