Cargando…

Comparison of Plasma Deposition of Carbon Nanomaterials Using Various Polymer Materials as a Carbon Atom Source

Carbon nanowalls are promising materials for various electrochemical devices due to their chemical inertness, desirable electrical conductivity, and excellent surface-to-mass ratio. Standard techniques, often based on plasma-assisted deposition using gaseous precursors, enable the synthesis of top-q...

Descripción completa

Detalles Bibliográficos
Autores principales: Vesel, Alenka, Zaplotnik, Rok, Primc, Gregor, Paul, Domen, Mozetič, Miran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8778974/
https://www.ncbi.nlm.nih.gov/pubmed/35055262
http://dx.doi.org/10.3390/nano12020246
Descripción
Sumario:Carbon nanowalls are promising materials for various electrochemical devices due to their chemical inertness, desirable electrical conductivity, and excellent surface-to-mass ratio. Standard techniques, often based on plasma-assisted deposition using gaseous precursors, enable the synthesis of top-quality carbon nanowalls, but require long deposition times which represents a serious obstacle for mass applications. Here, an alternative deposition technique is presented. The carbon nanowalls were synthesized on titanium substrates using various polymers as solid precursors. A solid precursor and the substrate were mounted into a low-pressure plasma reactor. Plasma was sustained by an inductively coupled radiofrequency discharge in the H-mode at the power of 500 W. Spontaneous growth of carbon nanomaterials was observed for a variety of polymer precursors. The best quality of carbon nanowalls was obtained using aliphatic polyolefins. The highest growth rate of a thin film of carbon nanowalls of about 200 nm/s was observed. The results were explained by different degradation mechanisms of polymers upon plasma treatment and the surface kinetics.