Cargando…
Dissecting Cellular Heterogeneity Based on Network Denoising of scRNA-seq Using Local Scaling Self-Diffusion
Identifying the phenotypes and interactions of various cells is the primary objective in cellular heterogeneity dissection. A key step of this methodology is to perform unsupervised clustering, which, however, often suffers challenges of the high level of noise, as well as redundant information. To...
Autores principales: | Duan, Xin, Wang, Wei, Tang, Minghui, Gao, Feng, Lin, Xudong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8784844/ https://www.ncbi.nlm.nih.gov/pubmed/35082838 http://dx.doi.org/10.3389/fgene.2021.811043 |
Ejemplares similares
-
Digitaldlsorter: Deep-Learning on scRNA-Seq to Deconvolute Gene Expression Data
por: Torroja, Carlos, et al.
Publicado: (2019) -
Corrigendum: Digitaldlsorter: Deep-Learning on scRNA-Seq to Deconvolute Gene Expression Data
por: Torroja, Carlos, et al.
Publicado: (2020) -
Probing regenerative heterogeneity of corticospinal neurons with scRNA-Seq
por: Kim, Hugo, et al.
Publicado: (2023) -
SCDRHA: A scRNA-Seq Data Dimensionality Reduction Algorithm Based on Hierarchical Autoencoder
por: Zhao, Jianping, et al.
Publicado: (2021) -
GeneMarkeR: A Database and User Interface for scRNA-seq Marker Genes
por: Paisley, Brianna M., et al.
Publicado: (2021)