Cargando…

Effects of Poly (ADP-ribose) Polymerase Inhibition on DNA Integrity and Gene Expression in Ovarian Follicular Cells in Mice with Endotoxemia

BACKGROUND: A mouse model of LPS-induced inflammation was used to investigate the effect of pharmacological inhibition of nuclear enzyme PARP-1 on oocyte maturation, apoptotic and necrotic death, as well as DNA integrity of follicular cells. Also, the relative expression of cumulus genes (HAS2, COX2...

Descripción completa

Detalles Bibliográficos
Autores principales: Kondratska, Olena, Grushka, Nataliya, Pavlovych, Svitlana, Krasutska, Nataliya, Tsyhankov, Serhii, Yanchii, Roman
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pasteur Institute of Iran 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8784896/
https://www.ncbi.nlm.nih.gov/pubmed/34826885
http://dx.doi.org/10.52547/ibj.26.1.44
Descripción
Sumario:BACKGROUND: A mouse model of LPS-induced inflammation was used to investigate the effect of pharmacological inhibition of nuclear enzyme PARP-1 on oocyte maturation, apoptotic and necrotic death, as well as DNA integrity of follicular cells. Also, the relative expression of cumulus genes (HAS2, COX2, and GREM1) associated with oocyte developmental competence was assessed. METHODS: Mice were treated with the PARP-1 inhibitor, 4-HQN, one hour before LPS administration. After 24 h, oocyte in vitro maturation was detected. Granulosa cell DNA damage was determined by the alkaline comet assay. Live, necrotic and apoptotic cells were identified using double vital staining by fluorescent dyes, Hoechst 33342 and propidium iodide. The expression levels of cumulus genes were assessed using reverse transcriptase PCR. RESULTS: The administration of 4-HQN to LPS-treated mice ameliorated oocyte meiotic maturation and exerted a significant cytoprotective effect. 4-HQN attenuated LPS-induced DNA damage and favored cell survival by decreasing necrosis and apoptosis in granulosa cells. Exposure to 4-HQN increased mRNA expression levels for HAS2, COX2, and GREM1 in cumulus cells. CONCLUSION: The obtained results indicate the involvement of PARP-1 in the pathogenesis of ovarian dysfunction caused by LPS. We suppose that this enzyme can be an attractive target for the therapy of inflammatory disorders in ovary. The protective action of PARP-1 inhibition could at least partly be associated with the reduction of necrotic death of follicular cells and also in other cells. However, the detailed mechanisms of the favorable effect of PARP inhibitors on endotoxin-induced ovarian disorders need to be further explored.