Cargando…
Mitofusin-2 Restrains Hepatic Stellate Cells' Proliferation via PI3K/Akt Signaling Pathway and Inhibits Liver Fibrosis in Rats
The mitochondrial GTPase mitofusin-2 (MFN2) gene can suppress the cell cycle and regulate cell proliferation in a number of cell types. However, its function in hepatic fibrosis remains largely unexplored. We attempted to understand the mechanism of MFN2 in hepatic stellate cell (HSC) proliferation...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8786480/ https://www.ncbi.nlm.nih.gov/pubmed/35083025 http://dx.doi.org/10.1155/2022/6731335 |
Sumario: | The mitochondrial GTPase mitofusin-2 (MFN2) gene can suppress the cell cycle and regulate cell proliferation in a number of cell types. However, its function in hepatic fibrosis remains largely unexplored. We attempted to understand the mechanism of MFN2 in hepatic stellate cell (HSC) proliferation and the development of hepatic fibrosis. Rat HSC-T6 HSC were cultured and transfected by adenovirus- (Ad-) Mfn2 or its negative control (NC) vector (Ad-green fluorescent protein (GFP)); a rat liver cirrhosis model was established via subcutaneous injection with carbon tetrachloride (CCl(4)). Seventy-two rats were randomly divided into four groups: CCl(4), Mfn2, GFP, and NC. Ad-Mfn2 or Ad-GFP was transfected into the circulation via intravenous injection at day 1, 14, 28, 42, or 56 after the first injection of CCl(4) in the Mfn2/GFP groups. Biomarkers related to HSC proliferation and the development of hepatic fibrosis were detected using western blotting, hematoxylin-eosin and Masson staining, and immunohistochemistry. In vitro, Mfn2 interfered specifically with platelet-derived growth factor- (PDGF-) induced signaling pathway (phosphatidylinositol 3-kinase- (PI3K-) AKT), inhibiting HSC-T6 cell activation and proliferation. During the process of hepatic fibrosis in vivo, extracellular collagen deposition and the expression of fibrosis-related proteins increased progressively, while Mfn2 expression decreased gradually. Upregulating Mfn2 expression at the early stage of fibrosis impeded the process, triggered the downregulation of type I collagen, and antagonized the formation of factors associated with liver fibrosis. Mfn2 suppresses HSC proliferation and activation and exhibits antifibrotic potential in early-stage hepatic fibrosis. Therefore, it may represent a significant therapeutic target for eradicating hepatic fibrosis. |
---|