Cargando…
An Adaptive Imitation Learning Framework for Robotic Complex Contact-Rich Insertion Tasks
Complex contact-rich insertion is a ubiquitous robotic manipulation skill and usually involves nonlinear and low-clearance insertion trajectories as well as varying force requirements. A hybrid trajectory and force learning framework can be utilized to generate high-quality trajectories by imitation...
Autores principales: | Wang, Yan, Beltran-Hernandez, Cristian C., Wan, Weiwei, Harada, Kensuke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787218/ https://www.ncbi.nlm.nih.gov/pubmed/35087872 http://dx.doi.org/10.3389/frobt.2021.777363 |
Ejemplares similares
-
Autonomous Robots for Space: Trajectory Learning and Adaptation Using Imitation
por: Ashith Shyam, R. B., et al.
Publicado: (2021) -
Imitating by Generating: Deep Generative Models for Imitation of Interactive Tasks
por: Bütepage, Judith, et al.
Publicado: (2020) -
Modeling Task Uncertainty for Safe Meta-Imitation Learning
por: Matsushima, Tatsuya, et al.
Publicado: (2020) -
Improving Autonomous Robotic Navigation Using Imitation Learning
por: Cèsar-Tondreau, Brian, et al.
Publicado: (2021) -
Humanoid Cognitive Robots That Learn by Imitating: Implications for Consciousness Studies
por: Reggia, James A., et al.
Publicado: (2018)