Cargando…

Model-based stratification of progression along the Alzheimer disease continuum highlights the centrality of biomarker synergies

BACKGROUND: The progression rates of Alzheimer’s disease (AD) are variable and dynamic, yet the mechanisms that contribute to heterogeneity in progression rates remain ill-understood. Particularly, the role of synergies in pathological processes reflected by biomarkers for amyloid-beta (‘A’), tau (‘...

Descripción completa

Detalles Bibliográficos
Autores principales: Sadiq, Muhammad Usman, Kwak, Kichang, Dayan, Eran
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787915/
https://www.ncbi.nlm.nih.gov/pubmed/35073974
http://dx.doi.org/10.1186/s13195-021-00941-1
Descripción
Sumario:BACKGROUND: The progression rates of Alzheimer’s disease (AD) are variable and dynamic, yet the mechanisms that contribute to heterogeneity in progression rates remain ill-understood. Particularly, the role of synergies in pathological processes reflected by biomarkers for amyloid-beta (‘A’), tau (‘T’), and neurodegeneration (‘N’) in progression along the AD continuum is not fully understood. METHODS: Here, we used a combination of model and data-driven approaches to address this question. Working with a large dataset (N = 321 across the training and testing cohorts), we first applied unsupervised clustering on longitudinal cognitive assessments to divide individuals on the AD continuum into those showing fast vs. moderate decline. Next, we developed a deep learning model that differentiated fast vs. moderate decline using baseline AT(N) biomarkers. RESULTS: Training the model with AT(N) biomarker combination revealed more prognostic utility than any individual biomarkers alone. We additionally found little overlap between the model-driven progression phenotypes and established atrophy-based AD subtypes. Our model showed that the combination of all AT(N) biomarkers had the most prognostic utility in predicting progression along the AD continuum. A comprehensive AT(N) model showed better predictive performance than biomarker pairs (A(N) and T(N)) and individual biomarkers (A, T, or N). CONCLUSIONS: This study combined data and model-driven methods to uncover the role of AT(N) biomarker synergies in the progression of cognitive decline along the AD continuum. The results suggest a synergistic relationship between AT(N) biomarkers in determining this progression, extending previous evidence of A-T synergistic mechanisms. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13195-021-00941-1.