Cargando…
What Singles out Aluminyl Anions? A Comparative Computational Study of the Carbon Dioxide Insertion Reaction in Gold–Aluminyl, −Gallyl, and −Indyl Complexes
[Image: see text] Anionic aluminum(I) anions (“aluminyls”) are the most recent discovery along Group 13 anions, and the understanding of the unconventional reactivity they are able to induce at a coordinated metal site is at an early stage. A striking example is the efficient insertion of carbon dio...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790757/ https://www.ncbi.nlm.nih.gov/pubmed/34986633 http://dx.doi.org/10.1021/acs.inorgchem.1c03579 |
_version_ | 1784640086136061952 |
---|---|
author | Sorbelli, Diego Belpassi, Leonardo Belanzoni, Paola |
author_facet | Sorbelli, Diego Belpassi, Leonardo Belanzoni, Paola |
author_sort | Sorbelli, Diego |
collection | PubMed |
description | [Image: see text] Anionic aluminum(I) anions (“aluminyls”) are the most recent discovery along Group 13 anions, and the understanding of the unconventional reactivity they are able to induce at a coordinated metal site is at an early stage. A striking example is the efficient insertion of carbon dioxide into the Au–Al bond of a gold–aluminyl complex. The reaction occurs via a cooperative mechanism, with the gold–aluminum bond being the actual nucleophile and the Al site also behaving as an electrophile. In the complex, the Au–Al bond has been shown to be mainly of an electron-sharing nature, with the two metal fragments displaying a diradical-like reactivity with CO(2). In this work, the analogous reactivity with isostructural Au–X complexes (X = Al, Ga, and In) is computationally explored. We demonstrate that a kinetically and thermodynamically favorable reactivity with CO(2) may only be expected for the gold–aluminyl complex. The Au–Al bond nature, which features the most (nonpolar) electron-sharing character among the Group 13 anions analyzed here, is responsible for its highest efficiency. The radical-like reactivity appears to be a key ingredient to stabilize the CO(2) insertion product. This investigation elucidates the special role of Al in these hetero-binuclear compounds, providing new insights into the peculiar electronic structure of aluminyls, which may help for the rational control of their unprecedented reactivity toward carbon dioxide. |
format | Online Article Text |
id | pubmed-8790757 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-87907572022-01-27 What Singles out Aluminyl Anions? A Comparative Computational Study of the Carbon Dioxide Insertion Reaction in Gold–Aluminyl, −Gallyl, and −Indyl Complexes Sorbelli, Diego Belpassi, Leonardo Belanzoni, Paola Inorg Chem [Image: see text] Anionic aluminum(I) anions (“aluminyls”) are the most recent discovery along Group 13 anions, and the understanding of the unconventional reactivity they are able to induce at a coordinated metal site is at an early stage. A striking example is the efficient insertion of carbon dioxide into the Au–Al bond of a gold–aluminyl complex. The reaction occurs via a cooperative mechanism, with the gold–aluminum bond being the actual nucleophile and the Al site also behaving as an electrophile. In the complex, the Au–Al bond has been shown to be mainly of an electron-sharing nature, with the two metal fragments displaying a diradical-like reactivity with CO(2). In this work, the analogous reactivity with isostructural Au–X complexes (X = Al, Ga, and In) is computationally explored. We demonstrate that a kinetically and thermodynamically favorable reactivity with CO(2) may only be expected for the gold–aluminyl complex. The Au–Al bond nature, which features the most (nonpolar) electron-sharing character among the Group 13 anions analyzed here, is responsible for its highest efficiency. The radical-like reactivity appears to be a key ingredient to stabilize the CO(2) insertion product. This investigation elucidates the special role of Al in these hetero-binuclear compounds, providing new insights into the peculiar electronic structure of aluminyls, which may help for the rational control of their unprecedented reactivity toward carbon dioxide. American Chemical Society 2022-01-06 2022-01-24 /pmc/articles/PMC8790757/ /pubmed/34986633 http://dx.doi.org/10.1021/acs.inorgchem.1c03579 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Sorbelli, Diego Belpassi, Leonardo Belanzoni, Paola What Singles out Aluminyl Anions? A Comparative Computational Study of the Carbon Dioxide Insertion Reaction in Gold–Aluminyl, −Gallyl, and −Indyl Complexes |
title | What Singles out Aluminyl Anions? A Comparative Computational
Study of the Carbon Dioxide Insertion Reaction in Gold–Aluminyl,
−Gallyl, and −Indyl Complexes |
title_full | What Singles out Aluminyl Anions? A Comparative Computational
Study of the Carbon Dioxide Insertion Reaction in Gold–Aluminyl,
−Gallyl, and −Indyl Complexes |
title_fullStr | What Singles out Aluminyl Anions? A Comparative Computational
Study of the Carbon Dioxide Insertion Reaction in Gold–Aluminyl,
−Gallyl, and −Indyl Complexes |
title_full_unstemmed | What Singles out Aluminyl Anions? A Comparative Computational
Study of the Carbon Dioxide Insertion Reaction in Gold–Aluminyl,
−Gallyl, and −Indyl Complexes |
title_short | What Singles out Aluminyl Anions? A Comparative Computational
Study of the Carbon Dioxide Insertion Reaction in Gold–Aluminyl,
−Gallyl, and −Indyl Complexes |
title_sort | what singles out aluminyl anions? a comparative computational
study of the carbon dioxide insertion reaction in gold–aluminyl,
−gallyl, and −indyl complexes |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8790757/ https://www.ncbi.nlm.nih.gov/pubmed/34986633 http://dx.doi.org/10.1021/acs.inorgchem.1c03579 |
work_keys_str_mv | AT sorbellidiego whatsinglesoutaluminylanionsacomparativecomputationalstudyofthecarbondioxideinsertionreactioningoldaluminylgallylandindylcomplexes AT belpassileonardo whatsinglesoutaluminylanionsacomparativecomputationalstudyofthecarbondioxideinsertionreactioningoldaluminylgallylandindylcomplexes AT belanzonipaola whatsinglesoutaluminylanionsacomparativecomputationalstudyofthecarbondioxideinsertionreactioningoldaluminylgallylandindylcomplexes |