Cargando…

Deep physical neural networks trained with backpropagation

Deep-learning models have become pervasive tools in science and engineering. However, their energy requirements now increasingly limit their scalability(1). Deep-learning accelerators(2–9) aim to perform deep learning energy-efficiently, usually targeting the inference phase and often by exploiting...

Descripción completa

Detalles Bibliográficos
Autores principales: Wright, Logan G., Onodera, Tatsuhiro, Stein, Martin M., Wang, Tianyu, Schachter, Darren T., Hu, Zoey, McMahon, Peter L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791835/
https://www.ncbi.nlm.nih.gov/pubmed/35082422
http://dx.doi.org/10.1038/s41586-021-04223-6