Cargando…
Ultrafast end-to-end protein structure prediction enables high-throughput exploration of uncharacterized proteins
Deep learning-based prediction of protein structure usually begins by constructing a multiple sequence alignment (MSA) containing homologs of the target protein. The most successful approaches combine large feature sets derived from MSAs, and considerable computational effort is spent deriving these...
Autores principales: | Kandathil, Shaun M., Greener, Joe G., Lau, Andy M., Jones, David T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8795500/ https://www.ncbi.nlm.nih.gov/pubmed/35074909 http://dx.doi.org/10.1073/pnas.2113348119 |
Ejemplares similares
-
Recent developments in deep learning applied to protein structure prediction
por: Kandathil, Shaun M., et al.
Publicado: (2019) -
Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints
por: Greener, Joe G., et al.
Publicado: (2019) -
Editorial: Characterizing the uncharacterized human proteins
por: Xu, Yan-Ming, et al.
Publicado: (2023) -
An end-to-end deep learning method for protein side-chain packing and inverse folding
por: McPartlon, Matthew, et al.
Publicado: (2023) -
Prediction of interresidue contacts with DeepMetaPSICOV in CASP13
por: Kandathil, Shaun M., et al.
Publicado: (2019)