Cargando…
Plasma protein binding prediction focusing on residue-level features and circularity of cyclic peptides by deep learning
MOTIVATION: In recent years, cyclic peptide drugs have been receiving increasing attention because they can target proteins that are difficult to be tackled by conventional small-molecule drugs or antibody drugs. Plasma protein binding rate ([Formula: see text]) is a significant pharmacokinetic prop...
Autores principales: | Li, Jianan, Yanagisawa, Keisuke, Yoshikawa, Yasushi, Ohue, Masahito, Akiyama, Yutaka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8796384/ https://www.ncbi.nlm.nih.gov/pubmed/34849593 http://dx.doi.org/10.1093/bioinformatics/btab726 |
Ejemplares similares
-
Computational prediction of plasma protein binding of cyclic peptides from small molecule experimental data using sparse modeling techniques
por: Tajimi, Takashi, et al.
Publicado: (2018) -
CycPeptMPDB: A
Comprehensive Database of Membrane
Permeability of Cyclic Peptides
por: Li, Jianan, et al.
Publicado: (2023) -
Lipid Composition
Is Critical for Accurate Membrane
Permeability Prediction of Cyclic Peptides by Molecular Dynamics Simulations
por: Sugita, Masatake, et al.
Publicado: (2022) -
Effective Protein–Ligand
Docking Strategy via
Fragment Reuse and a Proof-of-Concept Implementation
por: Yanagisawa, Keisuke, et al.
Publicado: (2022) -
MEGADOCK-Web: an integrated database of high-throughput structure-based protein-protein interaction predictions
por: Hayashi, Takanori, et al.
Publicado: (2018)