Cargando…
Hypoxia induces tumor cell growth and angiogenesis in non-small cell lung carcinoma via the Akt-PDK1-HIF1α-YKL-40 pathway
BACKGROUND: As one of the most common forms of cancer, non-small cell lung carcinoma (NSCLC), is characterized by oxygen deprivation (hypoxia). The transcription factor hypoxia-inducible factor (HIF)-1α is a major mediator which responds hypoxia and regulates many contributing factors. The various m...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8799056/ https://www.ncbi.nlm.nih.gov/pubmed/35117647 http://dx.doi.org/10.21037/tcr.2020.03.80 |
Sumario: | BACKGROUND: As one of the most common forms of cancer, non-small cell lung carcinoma (NSCLC), is characterized by oxygen deprivation (hypoxia). The transcription factor hypoxia-inducible factor (HIF)-1α is a major mediator which responds hypoxia and regulates many contributing factors. The various modes of hypoxia regulation are frequently the focus of research studies. With reference to previous published research, we hypothesized that hypoxia promotes the growth and angiogenesis of NSCLC via the Akt-PDK1-HIF1α-YKL-40 pathway, and verified it. METHODS: We mainly investigated changes in related factor expression between differently treated CL1-5 cells. We carried out overexpression and underexpression transfection, Western blot, rt-PCR and ELISA, and observed cellular biological behaviors by CCK-8 migration and invasion assay, and tube formation assay. RESULTS: A hypoxic environment significantly increased the phosphorylation of Akt and PDK1 in mitochondria. The hypoxia-induced accumulation of p-Akt in mitochondria activated PDK1 phosphorylation, promoted the expression of HIF1α, and the expression of YKL-40. The overexpression of YKL-40 promoted the proliferation, migration, invasion and tubule formation of CL1-5 cells. CONCLUSIONS: A hypoxic tumor microenvironment can promote the expansion and angiogenesis of NSCLC cells through the Akt-PDK1-HIF1α-YKL-40 pathway. This may provide a new mechanism and potential interventional target for anti-vascular lung cancer therapy. |
---|