Cargando…
MORPHIOUS: an unsupervised machine learning workflow to detect the activation of microglia and astrocytes
BACKGROUND: In conditions of brain injury and degeneration, defining microglial and astrocytic activation using cellular markers alone remains a challenging task. We developed the MORPHIOUS software package, an unsupervised machine learning workflow which can learn the morphologies of non-activated...
Autores principales: | Silburt, Joseph, Aubert, Isabelle |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8800241/ https://www.ncbi.nlm.nih.gov/pubmed/35093113 http://dx.doi.org/10.1186/s12974-021-02376-9 |
Ejemplares similares
-
Machine learning with Go quick start guide: hands-on techniques for building supervised and unsupervised machine learning workflows
por: Bironneau, Michael, et al.
Publicado: (2019) -
Detection of overdose and underdose prescriptions—An unsupervised machine learning approach
por: Nagata, Kenichiro, et al.
Publicado: (2021) -
Unsupervised machine learning for detection of faulty beam position monitors
por: Fol, Elena, et al.
Publicado: (2019) -
Unsupervised machine-learning method for improving the performance of ambulatory fall-detection systems
por: Yuwono, Mitchell, et al.
Publicado: (2012) -
Exploring Unsupervised Machine Learning Classification Methods for Physiological Stress Detection
por: Iqbal, Talha, et al.
Publicado: (2022)