Cargando…
FOXM1-induced TYMS upregulation promotes the progression of hepatocellular carcinoma
BACKGROUND: Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and one of the major causes of cancer-related death. Thymidylate synthase (TYMS) catalyzes the methylation of deoxy guanosine to deoxy thymidylate, which is a crucial gene for DNA repair and replication. Thus,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8801073/ https://www.ncbi.nlm.nih.gov/pubmed/35093082 http://dx.doi.org/10.1186/s12935-021-02372-2 |
_version_ | 1784642374604947456 |
---|---|
author | Wang, Liang Shi, Caiyan Yu, Jie Xu, Yilin |
author_facet | Wang, Liang Shi, Caiyan Yu, Jie Xu, Yilin |
author_sort | Wang, Liang |
collection | PubMed |
description | BACKGROUND: Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and one of the major causes of cancer-related death. Thymidylate synthase (TYMS) catalyzes the methylation of deoxy guanosine to deoxy thymidylate, which is a crucial gene for DNA repair and replication. Thus, TYMS was reported to be closely associated with developing a variety of tumors, but it has been poorly studied in HCC. MATERIALS AND METHODS: We used the cell counting kit-8 (CCK-8), BrdU, and CFSE assay to measure cell proliferation. The flow cytometry assay and the TUNEL assay were used for assessing cell apoptosis. The flow cytometry assay was used to analyze the cell cycle. The Transwell invasion assay and the wound healing assay were conducted to determine the invasive ability of the cells. RT-qPCR and Western blot analyses were performed to evaluate the mRNA and protein expression levels of specific genes, respectively. RESULTS: TYMS was found to be upregulated in both HCC cells and patient samples. High expression of TYMS was associated with an unfavorable prognosis in HCC patients based on the TCGA-LIHC dataset. Cell proliferation, apoptosis, and invasion assays revealed that TYMS promoted the proliferation and invasion of HCC cells as well as inhibited apoptosis. In addition, TYMS is a downstream target of FOXM1. TYMS knockdown reversed the 5-FU resistance caused by FOXM1 overexpression and re-sensitized HCC cells to 5-FU treatment. CONCLUSION: This study suggested that TYMS serves as an oncogene in HCC, and targeting the FOXM1-TYMS axis may help improve the survival of HCC patients as well as provide new insights for treating advanced HCC patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12935-021-02372-2. |
format | Online Article Text |
id | pubmed-8801073 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-88010732022-02-02 FOXM1-induced TYMS upregulation promotes the progression of hepatocellular carcinoma Wang, Liang Shi, Caiyan Yu, Jie Xu, Yilin Cancer Cell Int Primary Research BACKGROUND: Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and one of the major causes of cancer-related death. Thymidylate synthase (TYMS) catalyzes the methylation of deoxy guanosine to deoxy thymidylate, which is a crucial gene for DNA repair and replication. Thus, TYMS was reported to be closely associated with developing a variety of tumors, but it has been poorly studied in HCC. MATERIALS AND METHODS: We used the cell counting kit-8 (CCK-8), BrdU, and CFSE assay to measure cell proliferation. The flow cytometry assay and the TUNEL assay were used for assessing cell apoptosis. The flow cytometry assay was used to analyze the cell cycle. The Transwell invasion assay and the wound healing assay were conducted to determine the invasive ability of the cells. RT-qPCR and Western blot analyses were performed to evaluate the mRNA and protein expression levels of specific genes, respectively. RESULTS: TYMS was found to be upregulated in both HCC cells and patient samples. High expression of TYMS was associated with an unfavorable prognosis in HCC patients based on the TCGA-LIHC dataset. Cell proliferation, apoptosis, and invasion assays revealed that TYMS promoted the proliferation and invasion of HCC cells as well as inhibited apoptosis. In addition, TYMS is a downstream target of FOXM1. TYMS knockdown reversed the 5-FU resistance caused by FOXM1 overexpression and re-sensitized HCC cells to 5-FU treatment. CONCLUSION: This study suggested that TYMS serves as an oncogene in HCC, and targeting the FOXM1-TYMS axis may help improve the survival of HCC patients as well as provide new insights for treating advanced HCC patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12935-021-02372-2. BioMed Central 2022-01-29 /pmc/articles/PMC8801073/ /pubmed/35093082 http://dx.doi.org/10.1186/s12935-021-02372-2 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Primary Research Wang, Liang Shi, Caiyan Yu, Jie Xu, Yilin FOXM1-induced TYMS upregulation promotes the progression of hepatocellular carcinoma |
title | FOXM1-induced TYMS upregulation promotes the progression of hepatocellular carcinoma |
title_full | FOXM1-induced TYMS upregulation promotes the progression of hepatocellular carcinoma |
title_fullStr | FOXM1-induced TYMS upregulation promotes the progression of hepatocellular carcinoma |
title_full_unstemmed | FOXM1-induced TYMS upregulation promotes the progression of hepatocellular carcinoma |
title_short | FOXM1-induced TYMS upregulation promotes the progression of hepatocellular carcinoma |
title_sort | foxm1-induced tyms upregulation promotes the progression of hepatocellular carcinoma |
topic | Primary Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8801073/ https://www.ncbi.nlm.nih.gov/pubmed/35093082 http://dx.doi.org/10.1186/s12935-021-02372-2 |
work_keys_str_mv | AT wangliang foxm1inducedtymsupregulationpromotestheprogressionofhepatocellularcarcinoma AT shicaiyan foxm1inducedtymsupregulationpromotestheprogressionofhepatocellularcarcinoma AT yujie foxm1inducedtymsupregulationpromotestheprogressionofhepatocellularcarcinoma AT xuyilin foxm1inducedtymsupregulationpromotestheprogressionofhepatocellularcarcinoma |