Cargando…
Angiotensin II receptor 1 controls profibrotic Wnt/β-catenin signalling in experimental autoimmune myocarditis
AIMS: Angiotensin (Ang) II signalling has been suggested to promote cardiac fibrosis in inflammatory heart diseases; however, the underlying mechanisms remain obscure. Using Agtr1a(-/-) mice with genetic deletion of angiotensin receptor type 1 (ATR1) and the experimental autoimmune myocarditis (EAM)...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803091/ https://www.ncbi.nlm.nih.gov/pubmed/33576779 http://dx.doi.org/10.1093/cvr/cvab039 |
_version_ | 1784642795722506240 |
---|---|
author | Czepiel, Marcin Diviani, Dario Jaźwa-Kusior, Agnieszka Tkacz, Karolina Rolski, Filip Smolenski, Ryszard T Siedlar, Maciej Eriksson, Urs Kania, Gabriela Błyszczuk, Przemysław |
author_facet | Czepiel, Marcin Diviani, Dario Jaźwa-Kusior, Agnieszka Tkacz, Karolina Rolski, Filip Smolenski, Ryszard T Siedlar, Maciej Eriksson, Urs Kania, Gabriela Błyszczuk, Przemysław |
author_sort | Czepiel, Marcin |
collection | PubMed |
description | AIMS: Angiotensin (Ang) II signalling has been suggested to promote cardiac fibrosis in inflammatory heart diseases; however, the underlying mechanisms remain obscure. Using Agtr1a(-/-) mice with genetic deletion of angiotensin receptor type 1 (ATR1) and the experimental autoimmune myocarditis (EAM) model, we aimed to elucidate the role of Ang II-ATR1 pathway in development of heart-specific autoimmunity and post-inflammatory fibrosis. METHODS AND RESULTS: EAM was induced in wild-type (WT) and Agtr1a(-/-) mice by subcutaneous injections with alpha myosin heavy chain peptide emulsified in complete Freund’s adjuvant. Agtr1a(-/-) mice developed myocarditis to a similar extent as WT controls at day 21 but showed reduced fibrosis and better systolic function at day 40. Crisscross bone marrow chimaera experiments proved that ATR1 signalling in the bone marrow compartment was critical for cardiac fibrosis. Heart infiltrating, bone-marrow-derived cells produced Ang II, but lack of ATR1 in these cells reduced transforming growth factor beta (TGF-β)-mediated fibrotic responses. At the molecular level, Agtr1a(-/-) heart-inflammatory cells showed impaired TGF-β-mediated phosphorylation of Smad2 and TAK1. In WT cells, TGF-β induced formation of RhoA-GTP and RhoA-A-kinase anchoring protein-Lbc (AKAP-Lbc) complex. In Agtr1a(-)(/-) cells, stabilization of RhoA-GTP and interaction of RhoA with AKAP-Lbc were largely impaired. Furthermore, in contrast to WT cells, Agtr1a(-)(/-) cells stimulated with TGF-β failed to activate canonical Wnt pathway indicated by suppressed activity of glycogen synthase kinase-3 (GSK-3)β and nuclear β-catenin translocation and showed reduced expression of Wnts. In line with these in vitro findings, β-catenin was detected in inflammatory regions of hearts of WT, but not Agtr1a(-)(/-) mice and expression of canonical Wnt1 and Wnt10b were lower in Agtr1a(-)(/-) hearts. CONCLUSION: Ang II-ATR1 signalling is critical for development of post-inflammatory fibrotic remodelling and dilated cardiomyopathy. Our data underpin the importance of Ang II-ATR1 in effective TGF-β downstream signalling response including activation of profibrotic Wnt/β-catenin pathway. |
format | Online Article Text |
id | pubmed-8803091 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-88030912022-02-01 Angiotensin II receptor 1 controls profibrotic Wnt/β-catenin signalling in experimental autoimmune myocarditis Czepiel, Marcin Diviani, Dario Jaźwa-Kusior, Agnieszka Tkacz, Karolina Rolski, Filip Smolenski, Ryszard T Siedlar, Maciej Eriksson, Urs Kania, Gabriela Błyszczuk, Przemysław Cardiovasc Res Original Articles AIMS: Angiotensin (Ang) II signalling has been suggested to promote cardiac fibrosis in inflammatory heart diseases; however, the underlying mechanisms remain obscure. Using Agtr1a(-/-) mice with genetic deletion of angiotensin receptor type 1 (ATR1) and the experimental autoimmune myocarditis (EAM) model, we aimed to elucidate the role of Ang II-ATR1 pathway in development of heart-specific autoimmunity and post-inflammatory fibrosis. METHODS AND RESULTS: EAM was induced in wild-type (WT) and Agtr1a(-/-) mice by subcutaneous injections with alpha myosin heavy chain peptide emulsified in complete Freund’s adjuvant. Agtr1a(-/-) mice developed myocarditis to a similar extent as WT controls at day 21 but showed reduced fibrosis and better systolic function at day 40. Crisscross bone marrow chimaera experiments proved that ATR1 signalling in the bone marrow compartment was critical for cardiac fibrosis. Heart infiltrating, bone-marrow-derived cells produced Ang II, but lack of ATR1 in these cells reduced transforming growth factor beta (TGF-β)-mediated fibrotic responses. At the molecular level, Agtr1a(-/-) heart-inflammatory cells showed impaired TGF-β-mediated phosphorylation of Smad2 and TAK1. In WT cells, TGF-β induced formation of RhoA-GTP and RhoA-A-kinase anchoring protein-Lbc (AKAP-Lbc) complex. In Agtr1a(-)(/-) cells, stabilization of RhoA-GTP and interaction of RhoA with AKAP-Lbc were largely impaired. Furthermore, in contrast to WT cells, Agtr1a(-)(/-) cells stimulated with TGF-β failed to activate canonical Wnt pathway indicated by suppressed activity of glycogen synthase kinase-3 (GSK-3)β and nuclear β-catenin translocation and showed reduced expression of Wnts. In line with these in vitro findings, β-catenin was detected in inflammatory regions of hearts of WT, but not Agtr1a(-)(/-) mice and expression of canonical Wnt1 and Wnt10b were lower in Agtr1a(-)(/-) hearts. CONCLUSION: Ang II-ATR1 signalling is critical for development of post-inflammatory fibrotic remodelling and dilated cardiomyopathy. Our data underpin the importance of Ang II-ATR1 in effective TGF-β downstream signalling response including activation of profibrotic Wnt/β-catenin pathway. Oxford University Press 2021-02-08 /pmc/articles/PMC8803091/ /pubmed/33576779 http://dx.doi.org/10.1093/cvr/cvab039 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of the European Society of Cardiology. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Original Articles Czepiel, Marcin Diviani, Dario Jaźwa-Kusior, Agnieszka Tkacz, Karolina Rolski, Filip Smolenski, Ryszard T Siedlar, Maciej Eriksson, Urs Kania, Gabriela Błyszczuk, Przemysław Angiotensin II receptor 1 controls profibrotic Wnt/β-catenin signalling in experimental autoimmune myocarditis |
title | Angiotensin II receptor 1 controls profibrotic Wnt/β-catenin signalling in experimental autoimmune myocarditis |
title_full | Angiotensin II receptor 1 controls profibrotic Wnt/β-catenin signalling in experimental autoimmune myocarditis |
title_fullStr | Angiotensin II receptor 1 controls profibrotic Wnt/β-catenin signalling in experimental autoimmune myocarditis |
title_full_unstemmed | Angiotensin II receptor 1 controls profibrotic Wnt/β-catenin signalling in experimental autoimmune myocarditis |
title_short | Angiotensin II receptor 1 controls profibrotic Wnt/β-catenin signalling in experimental autoimmune myocarditis |
title_sort | angiotensin ii receptor 1 controls profibrotic wnt/β-catenin signalling in experimental autoimmune myocarditis |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8803091/ https://www.ncbi.nlm.nih.gov/pubmed/33576779 http://dx.doi.org/10.1093/cvr/cvab039 |
work_keys_str_mv | AT czepielmarcin angiotensiniireceptor1controlsprofibroticwntbcateninsignallinginexperimentalautoimmunemyocarditis AT divianidario angiotensiniireceptor1controlsprofibroticwntbcateninsignallinginexperimentalautoimmunemyocarditis AT jazwakusioragnieszka angiotensiniireceptor1controlsprofibroticwntbcateninsignallinginexperimentalautoimmunemyocarditis AT tkaczkarolina angiotensiniireceptor1controlsprofibroticwntbcateninsignallinginexperimentalautoimmunemyocarditis AT rolskifilip angiotensiniireceptor1controlsprofibroticwntbcateninsignallinginexperimentalautoimmunemyocarditis AT smolenskiryszardt angiotensiniireceptor1controlsprofibroticwntbcateninsignallinginexperimentalautoimmunemyocarditis AT siedlarmaciej angiotensiniireceptor1controlsprofibroticwntbcateninsignallinginexperimentalautoimmunemyocarditis AT erikssonurs angiotensiniireceptor1controlsprofibroticwntbcateninsignallinginexperimentalautoimmunemyocarditis AT kaniagabriela angiotensiniireceptor1controlsprofibroticwntbcateninsignallinginexperimentalautoimmunemyocarditis AT błyszczukprzemysław angiotensiniireceptor1controlsprofibroticwntbcateninsignallinginexperimentalautoimmunemyocarditis |