Cargando…
Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia
Retrotransposons can cause somatic genome variation in the human nervous system, which is hypothesized to have relevance to brain development and neuropsychiatric disease. However, the detection of individual somatic mobile element insertion (MEIs) presents a difficult signal-to-noise problem. Using...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806165/ https://www.ncbi.nlm.nih.gov/pubmed/33432196 http://dx.doi.org/10.1038/s41593-020-00767-4 |
_version_ | 1784643383508074496 |
---|---|
author | Zhu, Xiaowei Zhou, Bo Pattni, Reenal Gleason, Kelly Tan, Chunfeng Kalinowski, Agnieszka Sloan, Steven Fiston-Lavier, Anna-Sophie Mariani, Jessica Petrov, Dmitri Barres, Ben A. Duncan, Laramie Abyzov, Alexej Vogel, Hannes Moran, John V. Vaccarino, Flora M. Tamminga, Carol A. Levinson, Douglas F. Urban, Alexander E. |
author_facet | Zhu, Xiaowei Zhou, Bo Pattni, Reenal Gleason, Kelly Tan, Chunfeng Kalinowski, Agnieszka Sloan, Steven Fiston-Lavier, Anna-Sophie Mariani, Jessica Petrov, Dmitri Barres, Ben A. Duncan, Laramie Abyzov, Alexej Vogel, Hannes Moran, John V. Vaccarino, Flora M. Tamminga, Carol A. Levinson, Douglas F. Urban, Alexander E. |
author_sort | Zhu, Xiaowei |
collection | PubMed |
description | Retrotransposons can cause somatic genome variation in the human nervous system, which is hypothesized to have relevance to brain development and neuropsychiatric disease. However, the detection of individual somatic mobile element insertion (MEIs) presents a difficult signal-to-noise problem. Using a machine learning method (RetroSom) and deep whole genome sequencing, we analyzed L1 and Alu retrotransposition in sorted neurons and glia from human brains. We characterized two brain-specific L1 insertions in neurons and glia from a donor with schizophrenia. There was anatomical distribution of the L1 insertions in neurons and glia across both hemispheres, indicating retrotransposition occurred during early embryogenesis. Both insertions were within the introns of genes (CNNM2, FRMD4A) within genomic loci associated with neuropsychiatric disorders. Proof-of-principle experiments revealed these L1 insertions significantly reduced gene expression. These results demonstrate RetroSom has broad applications for studies of brain development and may provide insight into the possible pathological effects of somatic retrotransposition. |
format | Online Article Text |
id | pubmed-8806165 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-88061652022-02-01 Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia Zhu, Xiaowei Zhou, Bo Pattni, Reenal Gleason, Kelly Tan, Chunfeng Kalinowski, Agnieszka Sloan, Steven Fiston-Lavier, Anna-Sophie Mariani, Jessica Petrov, Dmitri Barres, Ben A. Duncan, Laramie Abyzov, Alexej Vogel, Hannes Moran, John V. Vaccarino, Flora M. Tamminga, Carol A. Levinson, Douglas F. Urban, Alexander E. Nat Neurosci Article Retrotransposons can cause somatic genome variation in the human nervous system, which is hypothesized to have relevance to brain development and neuropsychiatric disease. However, the detection of individual somatic mobile element insertion (MEIs) presents a difficult signal-to-noise problem. Using a machine learning method (RetroSom) and deep whole genome sequencing, we analyzed L1 and Alu retrotransposition in sorted neurons and glia from human brains. We characterized two brain-specific L1 insertions in neurons and glia from a donor with schizophrenia. There was anatomical distribution of the L1 insertions in neurons and glia across both hemispheres, indicating retrotransposition occurred during early embryogenesis. Both insertions were within the introns of genes (CNNM2, FRMD4A) within genomic loci associated with neuropsychiatric disorders. Proof-of-principle experiments revealed these L1 insertions significantly reduced gene expression. These results demonstrate RetroSom has broad applications for studies of brain development and may provide insight into the possible pathological effects of somatic retrotransposition. 2021-02 2021-01-11 /pmc/articles/PMC8806165/ /pubmed/33432196 http://dx.doi.org/10.1038/s41593-020-00767-4 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Zhu, Xiaowei Zhou, Bo Pattni, Reenal Gleason, Kelly Tan, Chunfeng Kalinowski, Agnieszka Sloan, Steven Fiston-Lavier, Anna-Sophie Mariani, Jessica Petrov, Dmitri Barres, Ben A. Duncan, Laramie Abyzov, Alexej Vogel, Hannes Moran, John V. Vaccarino, Flora M. Tamminga, Carol A. Levinson, Douglas F. Urban, Alexander E. Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia |
title | Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia |
title_full | Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia |
title_fullStr | Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia |
title_full_unstemmed | Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia |
title_short | Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia |
title_sort | machine learning reveals bilateral distribution of somatic l1 insertions in human neurons and glia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806165/ https://www.ncbi.nlm.nih.gov/pubmed/33432196 http://dx.doi.org/10.1038/s41593-020-00767-4 |
work_keys_str_mv | AT zhuxiaowei machinelearningrevealsbilateraldistributionofsomaticl1insertionsinhumanneuronsandglia AT zhoubo machinelearningrevealsbilateraldistributionofsomaticl1insertionsinhumanneuronsandglia AT pattnireenal machinelearningrevealsbilateraldistributionofsomaticl1insertionsinhumanneuronsandglia AT gleasonkelly machinelearningrevealsbilateraldistributionofsomaticl1insertionsinhumanneuronsandglia AT tanchunfeng machinelearningrevealsbilateraldistributionofsomaticl1insertionsinhumanneuronsandglia AT kalinowskiagnieszka machinelearningrevealsbilateraldistributionofsomaticl1insertionsinhumanneuronsandglia AT sloansteven machinelearningrevealsbilateraldistributionofsomaticl1insertionsinhumanneuronsandglia AT fistonlavierannasophie machinelearningrevealsbilateraldistributionofsomaticl1insertionsinhumanneuronsandglia AT marianijessica machinelearningrevealsbilateraldistributionofsomaticl1insertionsinhumanneuronsandglia AT petrovdmitri machinelearningrevealsbilateraldistributionofsomaticl1insertionsinhumanneuronsandglia AT barresbena machinelearningrevealsbilateraldistributionofsomaticl1insertionsinhumanneuronsandglia AT duncanlaramie machinelearningrevealsbilateraldistributionofsomaticl1insertionsinhumanneuronsandglia AT abyzovalexej machinelearningrevealsbilateraldistributionofsomaticl1insertionsinhumanneuronsandglia AT vogelhannes machinelearningrevealsbilateraldistributionofsomaticl1insertionsinhumanneuronsandglia AT machinelearningrevealsbilateraldistributionofsomaticl1insertionsinhumanneuronsandglia AT moranjohnv machinelearningrevealsbilateraldistributionofsomaticl1insertionsinhumanneuronsandglia AT vaccarinofloram machinelearningrevealsbilateraldistributionofsomaticl1insertionsinhumanneuronsandglia AT tammingacarola machinelearningrevealsbilateraldistributionofsomaticl1insertionsinhumanneuronsandglia AT levinsondouglasf machinelearningrevealsbilateraldistributionofsomaticl1insertionsinhumanneuronsandglia AT urbanalexandere machinelearningrevealsbilateraldistributionofsomaticl1insertionsinhumanneuronsandglia |