Cargando…
Combined assessment of MHC binding and antigen abundance improves T cell epitope predictions
Many steps of the MHC class I antigen processing pathway can be predicted using computational methods. Here we show that epitope predictions can be further improved by considering abundance levels of peptides' source proteins. We utilized biophysical principles and existing MHC binding predicti...
Autores principales: | Koşaloğlu-Yalçın, Zeynep, Lee, Jenny, Greenbaum, Jason, Schoenberger, Stephen P., Miller, Aaron, Kim, Young J., Sette, Alessandro, Nielsen, Morten, Peters, Bjoern |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806398/ https://www.ncbi.nlm.nih.gov/pubmed/35128348 http://dx.doi.org/10.1016/j.isci.2022.103850 |
Ejemplares similares
-
The Cancer Epitope Database and Analysis Resource (CEDAR)
por: Koşaloğlu-Yalçın, Zeynep, et al.
Publicado: (2022) -
Allele-Specific Thresholds of Eluted Ligands for T-Cell Epitope Prediction
por: Reardon, Brian, et al.
Publicado: (2021) -
The Cancer Epitope Database and Analysis Resource: A Blueprint for the Establishment of a New Bioinformatics Resource for Use by the Cancer Immunology Community
por: Koşaloğlu-Yalçın, Zeynep, et al.
Publicado: (2021) -
Estimating tissue-specific peptide abundance from public RNA-Seq data
por: Frentzen, Angela, et al.
Publicado: (2023) -
Predicting T cell recognition of MHC class I restricted neoepitopes
por: Koşaloğlu-Yalçın, Zeynep, et al.
Publicado: (2018)