Cargando…
A pan-CRISPR analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for genome-scale experiments
A genetic knockout can be lethal to one human cell type while increasing growth rate in another. This context specificity confounds genetic analysis and prevents reproducible genome engineering. Genome-wide CRISPR compendia across most common human cell lines offer the largest opportunity to underst...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810922/ https://www.ncbi.nlm.nih.gov/pubmed/35110534 http://dx.doi.org/10.1038/s41467-022-28045-w |
_version_ | 1784644330945773568 |
---|---|
author | Zhao, Boyang Rao, Yiyun Leighow, Scott O’Brien, Edward P. Gilbert, Luke Pritchard, Justin R. |
author_facet | Zhao, Boyang Rao, Yiyun Leighow, Scott O’Brien, Edward P. Gilbert, Luke Pritchard, Justin R. |
author_sort | Zhao, Boyang |
collection | PubMed |
description | A genetic knockout can be lethal to one human cell type while increasing growth rate in another. This context specificity confounds genetic analysis and prevents reproducible genome engineering. Genome-wide CRISPR compendia across most common human cell lines offer the largest opportunity to understand the biology of cell specificity. The prevailing viewpoint, synthetic lethality, occurs when a genetic alteration creates a unique CRISPR dependency. Here, we use machine learning for an unbiased investigation of cell type specificity. Quantifying model accuracy, we find that most cell type specific phenotypes are predicted by the function of related genes of wild-type sequence, not synthetic lethal relationships. These models then identify unexpected sets of 100-300 genes where reduced CRISPR measurements can produce genome-scale loss-of-function predictions across >18,000 genes. Thus, it is possible to reduce in vitro CRISPR libraries by orders of magnitude—with some information loss—when we remove redundant genes and not redundant sgRNAs. |
format | Online Article Text |
id | pubmed-8810922 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-88109222022-02-10 A pan-CRISPR analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for genome-scale experiments Zhao, Boyang Rao, Yiyun Leighow, Scott O’Brien, Edward P. Gilbert, Luke Pritchard, Justin R. Nat Commun Article A genetic knockout can be lethal to one human cell type while increasing growth rate in another. This context specificity confounds genetic analysis and prevents reproducible genome engineering. Genome-wide CRISPR compendia across most common human cell lines offer the largest opportunity to understand the biology of cell specificity. The prevailing viewpoint, synthetic lethality, occurs when a genetic alteration creates a unique CRISPR dependency. Here, we use machine learning for an unbiased investigation of cell type specificity. Quantifying model accuracy, we find that most cell type specific phenotypes are predicted by the function of related genes of wild-type sequence, not synthetic lethal relationships. These models then identify unexpected sets of 100-300 genes where reduced CRISPR measurements can produce genome-scale loss-of-function predictions across >18,000 genes. Thus, it is possible to reduce in vitro CRISPR libraries by orders of magnitude—with some information loss—when we remove redundant genes and not redundant sgRNAs. Nature Publishing Group UK 2022-02-02 /pmc/articles/PMC8810922/ /pubmed/35110534 http://dx.doi.org/10.1038/s41467-022-28045-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Zhao, Boyang Rao, Yiyun Leighow, Scott O’Brien, Edward P. Gilbert, Luke Pritchard, Justin R. A pan-CRISPR analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for genome-scale experiments |
title | A pan-CRISPR analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for genome-scale experiments |
title_full | A pan-CRISPR analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for genome-scale experiments |
title_fullStr | A pan-CRISPR analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for genome-scale experiments |
title_full_unstemmed | A pan-CRISPR analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for genome-scale experiments |
title_short | A pan-CRISPR analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for genome-scale experiments |
title_sort | pan-crispr analysis of mammalian cell specificity identifies ultra-compact sgrna subsets for genome-scale experiments |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810922/ https://www.ncbi.nlm.nih.gov/pubmed/35110534 http://dx.doi.org/10.1038/s41467-022-28045-w |
work_keys_str_mv | AT zhaoboyang apancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments AT raoyiyun apancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments AT leighowscott apancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments AT obrienedwardp apancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments AT gilbertluke apancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments AT pritchardjustinr apancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments AT zhaoboyang pancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments AT raoyiyun pancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments AT leighowscott pancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments AT obrienedwardp pancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments AT gilbertluke pancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments AT pritchardjustinr pancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments |