Cargando…

A pan-CRISPR analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for genome-scale experiments

A genetic knockout can be lethal to one human cell type while increasing growth rate in another. This context specificity confounds genetic analysis and prevents reproducible genome engineering. Genome-wide CRISPR compendia across most common human cell lines offer the largest opportunity to underst...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Boyang, Rao, Yiyun, Leighow, Scott, O’Brien, Edward P., Gilbert, Luke, Pritchard, Justin R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810922/
https://www.ncbi.nlm.nih.gov/pubmed/35110534
http://dx.doi.org/10.1038/s41467-022-28045-w
_version_ 1784644330945773568
author Zhao, Boyang
Rao, Yiyun
Leighow, Scott
O’Brien, Edward P.
Gilbert, Luke
Pritchard, Justin R.
author_facet Zhao, Boyang
Rao, Yiyun
Leighow, Scott
O’Brien, Edward P.
Gilbert, Luke
Pritchard, Justin R.
author_sort Zhao, Boyang
collection PubMed
description A genetic knockout can be lethal to one human cell type while increasing growth rate in another. This context specificity confounds genetic analysis and prevents reproducible genome engineering. Genome-wide CRISPR compendia across most common human cell lines offer the largest opportunity to understand the biology of cell specificity. The prevailing viewpoint, synthetic lethality, occurs when a genetic alteration creates a unique CRISPR dependency. Here, we use machine learning for an unbiased investigation of cell type specificity. Quantifying model accuracy, we find that most cell type specific phenotypes are predicted by the function of related genes of wild-type sequence, not synthetic lethal relationships. These models then identify unexpected sets of 100-300 genes where reduced CRISPR measurements can produce genome-scale loss-of-function predictions across >18,000 genes. Thus, it is possible to reduce in vitro CRISPR libraries by orders of magnitude—with some information loss—when we remove redundant genes and not redundant sgRNAs.
format Online
Article
Text
id pubmed-8810922
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-88109222022-02-10 A pan-CRISPR analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for genome-scale experiments Zhao, Boyang Rao, Yiyun Leighow, Scott O’Brien, Edward P. Gilbert, Luke Pritchard, Justin R. Nat Commun Article A genetic knockout can be lethal to one human cell type while increasing growth rate in another. This context specificity confounds genetic analysis and prevents reproducible genome engineering. Genome-wide CRISPR compendia across most common human cell lines offer the largest opportunity to understand the biology of cell specificity. The prevailing viewpoint, synthetic lethality, occurs when a genetic alteration creates a unique CRISPR dependency. Here, we use machine learning for an unbiased investigation of cell type specificity. Quantifying model accuracy, we find that most cell type specific phenotypes are predicted by the function of related genes of wild-type sequence, not synthetic lethal relationships. These models then identify unexpected sets of 100-300 genes where reduced CRISPR measurements can produce genome-scale loss-of-function predictions across >18,000 genes. Thus, it is possible to reduce in vitro CRISPR libraries by orders of magnitude—with some information loss—when we remove redundant genes and not redundant sgRNAs. Nature Publishing Group UK 2022-02-02 /pmc/articles/PMC8810922/ /pubmed/35110534 http://dx.doi.org/10.1038/s41467-022-28045-w Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Zhao, Boyang
Rao, Yiyun
Leighow, Scott
O’Brien, Edward P.
Gilbert, Luke
Pritchard, Justin R.
A pan-CRISPR analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for genome-scale experiments
title A pan-CRISPR analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for genome-scale experiments
title_full A pan-CRISPR analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for genome-scale experiments
title_fullStr A pan-CRISPR analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for genome-scale experiments
title_full_unstemmed A pan-CRISPR analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for genome-scale experiments
title_short A pan-CRISPR analysis of mammalian cell specificity identifies ultra-compact sgRNA subsets for genome-scale experiments
title_sort pan-crispr analysis of mammalian cell specificity identifies ultra-compact sgrna subsets for genome-scale experiments
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810922/
https://www.ncbi.nlm.nih.gov/pubmed/35110534
http://dx.doi.org/10.1038/s41467-022-28045-w
work_keys_str_mv AT zhaoboyang apancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments
AT raoyiyun apancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments
AT leighowscott apancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments
AT obrienedwardp apancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments
AT gilbertluke apancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments
AT pritchardjustinr apancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments
AT zhaoboyang pancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments
AT raoyiyun pancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments
AT leighowscott pancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments
AT obrienedwardp pancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments
AT gilbertluke pancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments
AT pritchardjustinr pancrispranalysisofmammaliancellspecificityidentifiesultracompactsgrnasubsetsforgenomescaleexperiments