Cargando…
CRISPRi enables fast growth followed by stable aerobic pyruvate formation in Escherichia coli without auxotrophy
CRISPR interference (CRISPRi) was applied to enable the aerobic production of pyruvate in Escherichia coli MG1655 under glucose excess conditions by targeting the promoter regions of aceE or pdhR. Knockdown strains were cultivated in aerobic shaking flasks and the influence of inducer concentration...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811725/ https://www.ncbi.nlm.nih.gov/pubmed/35140555 http://dx.doi.org/10.1002/elsc.202100021 |
Sumario: | CRISPR interference (CRISPRi) was applied to enable the aerobic production of pyruvate in Escherichia coli MG1655 under glucose excess conditions by targeting the promoter regions of aceE or pdhR. Knockdown strains were cultivated in aerobic shaking flasks and the influence of inducer concentration and different sgRNA binding sites on the production of pyruvate was measured. Targeting the promoter regions of aceE or pdhR triggered pyruvate production during the exponential phase and reduced expression of aceE. In lab‐scale bioreactor fermentations, an aceE silenced strain successfully produced pyruvate under fully aerobic conditions during the exponential phase, but loss of productivity occurred during a subsequent nitrogen‐limited phase. Targeting the promoter region of pdhR enabled pyruvate production during the growth phase of cultivations, and a continued low‐level accumulation during the nitrogen‐limited production phase. Combinatorial targeting of the promoter regions of both aceE and pdhR in E. coli MG1655 pdCas9 psgRNA_aceE_234_pdhR_329 resulted in the stable aerobic production of pyruvate with non‐growing cells at Y(P/S) = 0.36 ± 0.029 g(Pyruvate)/g(Glucose) in lab‐scale bioreactors throughout an extended nitrogen‐limited production phase. |
---|