Cargando…

Base-resolution models of transcription factor binding reveal soft motif syntax

The arrangement of transcription factor (TF) binding motifs (syntax) is an important part of the cis-regulatory code, yet remains elusive. We introduce a deep learning model, BPNet, that uses DNA sequence to predict base-resolution ChIP-nexus binding profiles of pluripotency TFs. We develop interpre...

Descripción completa

Detalles Bibliográficos
Autores principales: Avsec, Žiga, Weilert, Melanie, Shrikumar, Avanti, Krueger, Sabrina, Alexandari, Amr, Dalal, Khyati, Fropf, Robin, McAnany, Charles, Gagneur, Julien, Kundaje, Anshul, Zeitlinger, Julia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812996/
https://www.ncbi.nlm.nih.gov/pubmed/33603233
http://dx.doi.org/10.1038/s41588-021-00782-6
Descripción
Sumario:The arrangement of transcription factor (TF) binding motifs (syntax) is an important part of the cis-regulatory code, yet remains elusive. We introduce a deep learning model, BPNet, that uses DNA sequence to predict base-resolution ChIP-nexus binding profiles of pluripotency TFs. We develop interpretation tools to learn predictive motif representations and identify soft syntax rules for cooperative TF binding interactions. Strikingly, Nanog preferentially binds with helical periodicity, and TFs often cooperate in a directional manner, which we validate using CRISPR-induced point mutations. Our model represents a powerful general approach to uncover the motifs and syntax of cis-regulatory sequences in genomics data.