Cargando…
Base-resolution models of transcription factor binding reveal soft motif syntax
The arrangement of transcription factor (TF) binding motifs (syntax) is an important part of the cis-regulatory code, yet remains elusive. We introduce a deep learning model, BPNet, that uses DNA sequence to predict base-resolution ChIP-nexus binding profiles of pluripotency TFs. We develop interpre...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812996/ https://www.ncbi.nlm.nih.gov/pubmed/33603233 http://dx.doi.org/10.1038/s41588-021-00782-6 |
_version_ | 1784644777341353984 |
---|---|
author | Avsec, Žiga Weilert, Melanie Shrikumar, Avanti Krueger, Sabrina Alexandari, Amr Dalal, Khyati Fropf, Robin McAnany, Charles Gagneur, Julien Kundaje, Anshul Zeitlinger, Julia |
author_facet | Avsec, Žiga Weilert, Melanie Shrikumar, Avanti Krueger, Sabrina Alexandari, Amr Dalal, Khyati Fropf, Robin McAnany, Charles Gagneur, Julien Kundaje, Anshul Zeitlinger, Julia |
author_sort | Avsec, Žiga |
collection | PubMed |
description | The arrangement of transcription factor (TF) binding motifs (syntax) is an important part of the cis-regulatory code, yet remains elusive. We introduce a deep learning model, BPNet, that uses DNA sequence to predict base-resolution ChIP-nexus binding profiles of pluripotency TFs. We develop interpretation tools to learn predictive motif representations and identify soft syntax rules for cooperative TF binding interactions. Strikingly, Nanog preferentially binds with helical periodicity, and TFs often cooperate in a directional manner, which we validate using CRISPR-induced point mutations. Our model represents a powerful general approach to uncover the motifs and syntax of cis-regulatory sequences in genomics data. |
format | Online Article Text |
id | pubmed-8812996 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
record_format | MEDLINE/PubMed |
spelling | pubmed-88129962022-02-03 Base-resolution models of transcription factor binding reveal soft motif syntax Avsec, Žiga Weilert, Melanie Shrikumar, Avanti Krueger, Sabrina Alexandari, Amr Dalal, Khyati Fropf, Robin McAnany, Charles Gagneur, Julien Kundaje, Anshul Zeitlinger, Julia Nat Genet Article The arrangement of transcription factor (TF) binding motifs (syntax) is an important part of the cis-regulatory code, yet remains elusive. We introduce a deep learning model, BPNet, that uses DNA sequence to predict base-resolution ChIP-nexus binding profiles of pluripotency TFs. We develop interpretation tools to learn predictive motif representations and identify soft syntax rules for cooperative TF binding interactions. Strikingly, Nanog preferentially binds with helical periodicity, and TFs often cooperate in a directional manner, which we validate using CRISPR-induced point mutations. Our model represents a powerful general approach to uncover the motifs and syntax of cis-regulatory sequences in genomics data. 2021-03 2021-02-18 /pmc/articles/PMC8812996/ /pubmed/33603233 http://dx.doi.org/10.1038/s41588-021-00782-6 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Avsec, Žiga Weilert, Melanie Shrikumar, Avanti Krueger, Sabrina Alexandari, Amr Dalal, Khyati Fropf, Robin McAnany, Charles Gagneur, Julien Kundaje, Anshul Zeitlinger, Julia Base-resolution models of transcription factor binding reveal soft motif syntax |
title | Base-resolution models of transcription factor binding reveal soft motif syntax |
title_full | Base-resolution models of transcription factor binding reveal soft motif syntax |
title_fullStr | Base-resolution models of transcription factor binding reveal soft motif syntax |
title_full_unstemmed | Base-resolution models of transcription factor binding reveal soft motif syntax |
title_short | Base-resolution models of transcription factor binding reveal soft motif syntax |
title_sort | base-resolution models of transcription factor binding reveal soft motif syntax |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812996/ https://www.ncbi.nlm.nih.gov/pubmed/33603233 http://dx.doi.org/10.1038/s41588-021-00782-6 |
work_keys_str_mv | AT avsecziga baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax AT weilertmelanie baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax AT shrikumaravanti baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax AT kruegersabrina baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax AT alexandariamr baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax AT dalalkhyati baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax AT fropfrobin baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax AT mcananycharles baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax AT gagneurjulien baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax AT kundajeanshul baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax AT zeitlingerjulia baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax |