Cargando…

Base-resolution models of transcription factor binding reveal soft motif syntax

The arrangement of transcription factor (TF) binding motifs (syntax) is an important part of the cis-regulatory code, yet remains elusive. We introduce a deep learning model, BPNet, that uses DNA sequence to predict base-resolution ChIP-nexus binding profiles of pluripotency TFs. We develop interpre...

Descripción completa

Detalles Bibliográficos
Autores principales: Avsec, Žiga, Weilert, Melanie, Shrikumar, Avanti, Krueger, Sabrina, Alexandari, Amr, Dalal, Khyati, Fropf, Robin, McAnany, Charles, Gagneur, Julien, Kundaje, Anshul, Zeitlinger, Julia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812996/
https://www.ncbi.nlm.nih.gov/pubmed/33603233
http://dx.doi.org/10.1038/s41588-021-00782-6
_version_ 1784644777341353984
author Avsec, Žiga
Weilert, Melanie
Shrikumar, Avanti
Krueger, Sabrina
Alexandari, Amr
Dalal, Khyati
Fropf, Robin
McAnany, Charles
Gagneur, Julien
Kundaje, Anshul
Zeitlinger, Julia
author_facet Avsec, Žiga
Weilert, Melanie
Shrikumar, Avanti
Krueger, Sabrina
Alexandari, Amr
Dalal, Khyati
Fropf, Robin
McAnany, Charles
Gagneur, Julien
Kundaje, Anshul
Zeitlinger, Julia
author_sort Avsec, Žiga
collection PubMed
description The arrangement of transcription factor (TF) binding motifs (syntax) is an important part of the cis-regulatory code, yet remains elusive. We introduce a deep learning model, BPNet, that uses DNA sequence to predict base-resolution ChIP-nexus binding profiles of pluripotency TFs. We develop interpretation tools to learn predictive motif representations and identify soft syntax rules for cooperative TF binding interactions. Strikingly, Nanog preferentially binds with helical periodicity, and TFs often cooperate in a directional manner, which we validate using CRISPR-induced point mutations. Our model represents a powerful general approach to uncover the motifs and syntax of cis-regulatory sequences in genomics data.
format Online
Article
Text
id pubmed-8812996
institution National Center for Biotechnology Information
language English
publishDate 2021
record_format MEDLINE/PubMed
spelling pubmed-88129962022-02-03 Base-resolution models of transcription factor binding reveal soft motif syntax Avsec, Žiga Weilert, Melanie Shrikumar, Avanti Krueger, Sabrina Alexandari, Amr Dalal, Khyati Fropf, Robin McAnany, Charles Gagneur, Julien Kundaje, Anshul Zeitlinger, Julia Nat Genet Article The arrangement of transcription factor (TF) binding motifs (syntax) is an important part of the cis-regulatory code, yet remains elusive. We introduce a deep learning model, BPNet, that uses DNA sequence to predict base-resolution ChIP-nexus binding profiles of pluripotency TFs. We develop interpretation tools to learn predictive motif representations and identify soft syntax rules for cooperative TF binding interactions. Strikingly, Nanog preferentially binds with helical periodicity, and TFs often cooperate in a directional manner, which we validate using CRISPR-induced point mutations. Our model represents a powerful general approach to uncover the motifs and syntax of cis-regulatory sequences in genomics data. 2021-03 2021-02-18 /pmc/articles/PMC8812996/ /pubmed/33603233 http://dx.doi.org/10.1038/s41588-021-00782-6 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Avsec, Žiga
Weilert, Melanie
Shrikumar, Avanti
Krueger, Sabrina
Alexandari, Amr
Dalal, Khyati
Fropf, Robin
McAnany, Charles
Gagneur, Julien
Kundaje, Anshul
Zeitlinger, Julia
Base-resolution models of transcription factor binding reveal soft motif syntax
title Base-resolution models of transcription factor binding reveal soft motif syntax
title_full Base-resolution models of transcription factor binding reveal soft motif syntax
title_fullStr Base-resolution models of transcription factor binding reveal soft motif syntax
title_full_unstemmed Base-resolution models of transcription factor binding reveal soft motif syntax
title_short Base-resolution models of transcription factor binding reveal soft motif syntax
title_sort base-resolution models of transcription factor binding reveal soft motif syntax
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812996/
https://www.ncbi.nlm.nih.gov/pubmed/33603233
http://dx.doi.org/10.1038/s41588-021-00782-6
work_keys_str_mv AT avsecziga baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax
AT weilertmelanie baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax
AT shrikumaravanti baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax
AT kruegersabrina baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax
AT alexandariamr baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax
AT dalalkhyati baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax
AT fropfrobin baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax
AT mcananycharles baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax
AT gagneurjulien baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax
AT kundajeanshul baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax
AT zeitlingerjulia baseresolutionmodelsoftranscriptionfactorbindingrevealsoftmotifsyntax