Cargando…
Base-resolution models of transcription factor binding reveal soft motif syntax
The arrangement of transcription factor (TF) binding motifs (syntax) is an important part of the cis-regulatory code, yet remains elusive. We introduce a deep learning model, BPNet, that uses DNA sequence to predict base-resolution ChIP-nexus binding profiles of pluripotency TFs. We develop interpre...
Autores principales: | Avsec, Žiga, Weilert, Melanie, Shrikumar, Avanti, Krueger, Sabrina, Alexandari, Amr, Dalal, Khyati, Fropf, Robin, McAnany, Charles, Gagneur, Julien, Kundaje, Anshul, Zeitlinger, Julia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812996/ https://www.ncbi.nlm.nih.gov/pubmed/33603233 http://dx.doi.org/10.1038/s41588-021-00782-6 |
Ejemplares similares
-
De novo distillation of thermodynamic affinity from deep learning regulatory sequence models of in vivo protein-DNA binding
por: Alexandari, Amr M., et al.
Publicado: (2023) -
The Kipoi repository accelerates community exchange and reuse of predictive models for genomics
por: Avsec, Žiga, et al.
Publicado: (2019) -
GkmExplain: fast and accurate interpretation of nonlinear gapped k-mer SVMs
por: Shrikumar, Avanti, et al.
Publicado: (2019) -
Predicting mean ribosome load for 5’UTR of any length using deep learning
por: Karollus, Alexander, et al.
Publicado: (2021) -
Deciphering regulatory DNA sequences and noncoding genetic variants using neural network models of massively parallel reporter assays
por: Movva, Rajiv, et al.
Publicado: (2019)