Cargando…
Long non-coding RNA TUG1 sponges microRNA-9 to protect podocytes from high glucose-induced apoptosis and mitochondrial dysfunction via SIRT1 upregulation
Podocyte apoptosis and mitochondrial dysfunction serve a major role in diabetic nephropathy progression. The present study revealed a molecular mechanism regulating podocyte apoptosis and mitochondrial dysfunction. In vitro models were established using conditionally immortalized mouse podocyte clon...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8815052/ https://www.ncbi.nlm.nih.gov/pubmed/35222713 http://dx.doi.org/10.3892/etm.2022.11161 |
Sumario: | Podocyte apoptosis and mitochondrial dysfunction serve a major role in diabetic nephropathy progression. The present study revealed a molecular mechanism regulating podocyte apoptosis and mitochondrial dysfunction. In vitro models were established using conditionally immortalized mouse podocyte clonal cells treated with high glucose (HG). Reverse quantitative-transcription PCR were used to detect gene expression, western blotting and immunofluorescence were used to detect protein expression, Cell Counting Kit-8 was used to detect cell viability and flow cytometry was used to detect cell apoptosis. HG treatment in the mouse podocyte clonal cells downregulated taurine-upregulated gene 1 (TUG1) expression and decreased viability in a dose-dependent manner. In addition, TUG1 knockdown (KD) increased HG-induced apoptosis, while TUG1 overexpression (OE) reduced HG-induced apoptosis in podocytes. HG-induced mitochondrial dysfunction was identified in podocytes, with increased reactive oxygen species levels, decreased complex I/III activity and decreased basal/maximal oxygen consumption rate. TUG1 KD worsened HG-induced mitochondrial dysfunction, and TUG1 OE reversed these effects. At the molecular level, TUG1 was revealed to promote sirtuin 1 (SIRT1) expression by sponging microRNA (miR)-9, and SIRT1 OE reversed the HG-induced apoptosis and mitochondrial dysfunction increased by TUG1 KD. The present data indicated that downregulation of TUG1 induced by HG was associated with HG-induced apoptosis and mitochondrial dysfunction in podocytes, and that TUG1 protected HG-induced podocytes by promoting SIRT1 expression via miR-9 inhibition. |
---|