Cargando…
N6-methyladenosine-dependent modification of circGARS acts as a new player that promotes SLE progression through the NF-κB/A20 axis
BACKGROUND: Certain circRNAs could be used as biomarkers to determine the risk of development and/or severity of systemic lupus erythematosus, and their new function in the regulation of gene expression has motivated us to investigate their role in SLE METHODS: Experimental methods including qRT-PCR...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8815128/ https://www.ncbi.nlm.nih.gov/pubmed/35120571 http://dx.doi.org/10.1186/s13075-022-02732-x |
Sumario: | BACKGROUND: Certain circRNAs could be used as biomarkers to determine the risk of development and/or severity of systemic lupus erythematosus, and their new function in the regulation of gene expression has motivated us to investigate their role in SLE METHODS: Experimental methods including qRT-PCR, RNA immunoprecipitation (RIP), pulldown, dual luciferase reporter assay, RNA interference and cell transfection, RNA fluorescence in situ hybridization, western blotting, and mass spectrometry were used to assessed circGARS (hsa_circRNA_0009000) for immune functions and defined mechanisms by which circGARS promotes the progression in SLE. RESULTS: Our results demonstrated that the levels of circGARS was remarkably upregulated in SLE and correlated with clinicopathological features. CircGARS directly combined with microRNA-19a (miR-19a). Functionally, circGARS downregulated the expression of TNFAIP3 (A20, tumor necrosis factor alpha-induced protein 3) to mediate the activation of immune responses that were regulated by the nuclear factor-κB (NF-κB) pathway as a negative feedback mechanism. In addition, miR-19a regulated A20 (TNFAIP3) degradation by downregulating the expression of YTH N6-methyladenosine RNA-binding protein 2 (YTHDF2). CONCLUSIONS: The circGARS sponges miR-19a to regulate YTHDF2 expression to promote SLE progression through the A20/NF-κB axis and may act as an independent biomarker to help the treatment of SLE patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13075-022-02732-x. |
---|