Cargando…

A δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes

Restoring damaged β-cells in diabetic patients by harnessing the plasticity of other pancreatic cells raises the questions of the efficiency of the process and of the functionality of the new Insulin-expressing cells. To overcome the weak regenerative capacity of mammals, we used regeneration-prone...

Descripción completa

Detalles Bibliográficos
Autores principales: Carril Pardo, Claudio Andrés, Massoz, Laura, Dupont, Marie A, Bergemann, David, Bourdouxhe, Jordane, Lavergne, Arnaud, Tarifeño-Saldivia, Estefania, Helker, Christian SM, Stainier, Didier YR, Peers, Bernard, Voz, Marianne M, Manfroid, Isabelle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820734/
https://www.ncbi.nlm.nih.gov/pubmed/35060900
http://dx.doi.org/10.7554/eLife.67576
_version_ 1784646267282915328
author Carril Pardo, Claudio Andrés
Massoz, Laura
Dupont, Marie A
Bergemann, David
Bourdouxhe, Jordane
Lavergne, Arnaud
Tarifeño-Saldivia, Estefania
Helker, Christian SM
Stainier, Didier YR
Peers, Bernard
Voz, Marianne M
Manfroid, Isabelle
author_facet Carril Pardo, Claudio Andrés
Massoz, Laura
Dupont, Marie A
Bergemann, David
Bourdouxhe, Jordane
Lavergne, Arnaud
Tarifeño-Saldivia, Estefania
Helker, Christian SM
Stainier, Didier YR
Peers, Bernard
Voz, Marianne M
Manfroid, Isabelle
author_sort Carril Pardo, Claudio Andrés
collection PubMed
description Restoring damaged β-cells in diabetic patients by harnessing the plasticity of other pancreatic cells raises the questions of the efficiency of the process and of the functionality of the new Insulin-expressing cells. To overcome the weak regenerative capacity of mammals, we used regeneration-prone zebrafish to study β-cells arising following destruction. We show that most new insulin cells differ from the original β-cells as they coexpress Somatostatin and Insulin. These bihormonal cells are abundant, functional and able to normalize glycemia. Their formation in response to β-cell destruction is fast, efficient, and age-independent. Bihormonal cells are transcriptionally close to a subset of δ-cells that we identified in control islets and that are characterized by the expression of somatostatin 1.1 (sst1.1) and by genes essential for glucose-induced Insulin secretion in β-cells such as pdx1, slc2a2 and gck. We observed in vivo the conversion of monohormonal sst1.1-expressing cells to sst1.1+ ins + bihormonal cells following β-cell destruction. Our findings support the conclusion that sst1.1 δ-cells possess a pro-β identity enabling them to contribute to the neogenesis of Insulin-producing cells during regeneration. This work unveils that abundant and functional bihormonal cells benefit to diabetes recovery in zebrafish.
format Online
Article
Text
id pubmed-8820734
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-88207342022-02-09 A δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes Carril Pardo, Claudio Andrés Massoz, Laura Dupont, Marie A Bergemann, David Bourdouxhe, Jordane Lavergne, Arnaud Tarifeño-Saldivia, Estefania Helker, Christian SM Stainier, Didier YR Peers, Bernard Voz, Marianne M Manfroid, Isabelle eLife Cell Biology Restoring damaged β-cells in diabetic patients by harnessing the plasticity of other pancreatic cells raises the questions of the efficiency of the process and of the functionality of the new Insulin-expressing cells. To overcome the weak regenerative capacity of mammals, we used regeneration-prone zebrafish to study β-cells arising following destruction. We show that most new insulin cells differ from the original β-cells as they coexpress Somatostatin and Insulin. These bihormonal cells are abundant, functional and able to normalize glycemia. Their formation in response to β-cell destruction is fast, efficient, and age-independent. Bihormonal cells are transcriptionally close to a subset of δ-cells that we identified in control islets and that are characterized by the expression of somatostatin 1.1 (sst1.1) and by genes essential for glucose-induced Insulin secretion in β-cells such as pdx1, slc2a2 and gck. We observed in vivo the conversion of monohormonal sst1.1-expressing cells to sst1.1+ ins + bihormonal cells following β-cell destruction. Our findings support the conclusion that sst1.1 δ-cells possess a pro-β identity enabling them to contribute to the neogenesis of Insulin-producing cells during regeneration. This work unveils that abundant and functional bihormonal cells benefit to diabetes recovery in zebrafish. eLife Sciences Publications, Ltd 2022-01-21 /pmc/articles/PMC8820734/ /pubmed/35060900 http://dx.doi.org/10.7554/eLife.67576 Text en © 2022, Carril Pardo et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Cell Biology
Carril Pardo, Claudio Andrés
Massoz, Laura
Dupont, Marie A
Bergemann, David
Bourdouxhe, Jordane
Lavergne, Arnaud
Tarifeño-Saldivia, Estefania
Helker, Christian SM
Stainier, Didier YR
Peers, Bernard
Voz, Marianne M
Manfroid, Isabelle
A δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes
title A δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes
title_full A δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes
title_fullStr A δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes
title_full_unstemmed A δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes
title_short A δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes
title_sort δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes
topic Cell Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820734/
https://www.ncbi.nlm.nih.gov/pubmed/35060900
http://dx.doi.org/10.7554/eLife.67576
work_keys_str_mv AT carrilpardoclaudioandres adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT massozlaura adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT dupontmariea adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT bergemanndavid adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT bourdouxhejordane adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT lavergnearnaud adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT tarifenosaldiviaestefania adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT helkerchristiansm adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT stainierdidieryr adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT peersbernard adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT vozmariannem adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT manfroidisabelle adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT carrilpardoclaudioandres dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT massozlaura dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT dupontmariea dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT bergemanndavid dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT bourdouxhejordane dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT lavergnearnaud dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT tarifenosaldiviaestefania dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT helkerchristiansm dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT stainierdidieryr dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT peersbernard dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT vozmariannem dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes
AT manfroidisabelle dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes