Cargando…
A δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes
Restoring damaged β-cells in diabetic patients by harnessing the plasticity of other pancreatic cells raises the questions of the efficiency of the process and of the functionality of the new Insulin-expressing cells. To overcome the weak regenerative capacity of mammals, we used regeneration-prone...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820734/ https://www.ncbi.nlm.nih.gov/pubmed/35060900 http://dx.doi.org/10.7554/eLife.67576 |
_version_ | 1784646267282915328 |
---|---|
author | Carril Pardo, Claudio Andrés Massoz, Laura Dupont, Marie A Bergemann, David Bourdouxhe, Jordane Lavergne, Arnaud Tarifeño-Saldivia, Estefania Helker, Christian SM Stainier, Didier YR Peers, Bernard Voz, Marianne M Manfroid, Isabelle |
author_facet | Carril Pardo, Claudio Andrés Massoz, Laura Dupont, Marie A Bergemann, David Bourdouxhe, Jordane Lavergne, Arnaud Tarifeño-Saldivia, Estefania Helker, Christian SM Stainier, Didier YR Peers, Bernard Voz, Marianne M Manfroid, Isabelle |
author_sort | Carril Pardo, Claudio Andrés |
collection | PubMed |
description | Restoring damaged β-cells in diabetic patients by harnessing the plasticity of other pancreatic cells raises the questions of the efficiency of the process and of the functionality of the new Insulin-expressing cells. To overcome the weak regenerative capacity of mammals, we used regeneration-prone zebrafish to study β-cells arising following destruction. We show that most new insulin cells differ from the original β-cells as they coexpress Somatostatin and Insulin. These bihormonal cells are abundant, functional and able to normalize glycemia. Their formation in response to β-cell destruction is fast, efficient, and age-independent. Bihormonal cells are transcriptionally close to a subset of δ-cells that we identified in control islets and that are characterized by the expression of somatostatin 1.1 (sst1.1) and by genes essential for glucose-induced Insulin secretion in β-cells such as pdx1, slc2a2 and gck. We observed in vivo the conversion of monohormonal sst1.1-expressing cells to sst1.1+ ins + bihormonal cells following β-cell destruction. Our findings support the conclusion that sst1.1 δ-cells possess a pro-β identity enabling them to contribute to the neogenesis of Insulin-producing cells during regeneration. This work unveils that abundant and functional bihormonal cells benefit to diabetes recovery in zebrafish. |
format | Online Article Text |
id | pubmed-8820734 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | eLife Sciences Publications, Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-88207342022-02-09 A δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes Carril Pardo, Claudio Andrés Massoz, Laura Dupont, Marie A Bergemann, David Bourdouxhe, Jordane Lavergne, Arnaud Tarifeño-Saldivia, Estefania Helker, Christian SM Stainier, Didier YR Peers, Bernard Voz, Marianne M Manfroid, Isabelle eLife Cell Biology Restoring damaged β-cells in diabetic patients by harnessing the plasticity of other pancreatic cells raises the questions of the efficiency of the process and of the functionality of the new Insulin-expressing cells. To overcome the weak regenerative capacity of mammals, we used regeneration-prone zebrafish to study β-cells arising following destruction. We show that most new insulin cells differ from the original β-cells as they coexpress Somatostatin and Insulin. These bihormonal cells are abundant, functional and able to normalize glycemia. Their formation in response to β-cell destruction is fast, efficient, and age-independent. Bihormonal cells are transcriptionally close to a subset of δ-cells that we identified in control islets and that are characterized by the expression of somatostatin 1.1 (sst1.1) and by genes essential for glucose-induced Insulin secretion in β-cells such as pdx1, slc2a2 and gck. We observed in vivo the conversion of monohormonal sst1.1-expressing cells to sst1.1+ ins + bihormonal cells following β-cell destruction. Our findings support the conclusion that sst1.1 δ-cells possess a pro-β identity enabling them to contribute to the neogenesis of Insulin-producing cells during regeneration. This work unveils that abundant and functional bihormonal cells benefit to diabetes recovery in zebrafish. eLife Sciences Publications, Ltd 2022-01-21 /pmc/articles/PMC8820734/ /pubmed/35060900 http://dx.doi.org/10.7554/eLife.67576 Text en © 2022, Carril Pardo et al https://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Cell Biology Carril Pardo, Claudio Andrés Massoz, Laura Dupont, Marie A Bergemann, David Bourdouxhe, Jordane Lavergne, Arnaud Tarifeño-Saldivia, Estefania Helker, Christian SM Stainier, Didier YR Peers, Bernard Voz, Marianne M Manfroid, Isabelle A δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes |
title | A δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes |
title_full | A δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes |
title_fullStr | A δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes |
title_full_unstemmed | A δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes |
title_short | A δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes |
title_sort | δ-cell subpopulation with a pro-β-cell identity contributes to efficient age-independent recovery in a zebrafish model of diabetes |
topic | Cell Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8820734/ https://www.ncbi.nlm.nih.gov/pubmed/35060900 http://dx.doi.org/10.7554/eLife.67576 |
work_keys_str_mv | AT carrilpardoclaudioandres adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT massozlaura adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT dupontmariea adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT bergemanndavid adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT bourdouxhejordane adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT lavergnearnaud adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT tarifenosaldiviaestefania adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT helkerchristiansm adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT stainierdidieryr adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT peersbernard adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT vozmariannem adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT manfroidisabelle adcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT carrilpardoclaudioandres dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT massozlaura dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT dupontmariea dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT bergemanndavid dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT bourdouxhejordane dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT lavergnearnaud dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT tarifenosaldiviaestefania dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT helkerchristiansm dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT stainierdidieryr dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT peersbernard dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT vozmariannem dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes AT manfroidisabelle dcellsubpopulationwithaprobcellidentitycontributestoefficientageindependentrecoveryinazebrafishmodelofdiabetes |