Cargando…
Thin films of the [Formula: see text] -quartz [Formula: see text] solid solution
[Formula: see text] with the [Formula: see text] -quartz structure is one of the most popular piezoelectrics. It is widely used in crystal oscillators, bulk acoustic wave (BAW) devices, surface acoustic wave (SAW) devices, and so on. [Formula: see text] can also be crystallized into the [Formula: se...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8821611/ https://www.ncbi.nlm.nih.gov/pubmed/35132092 http://dx.doi.org/10.1038/s41598-022-05595-z |
Sumario: | [Formula: see text] with the [Formula: see text] -quartz structure is one of the most popular piezoelectrics. It is widely used in crystal oscillators, bulk acoustic wave (BAW) devices, surface acoustic wave (SAW) devices, and so on. [Formula: see text] can also be crystallized into the [Formula: see text] -quartz structure and it has better piezoelectric properties, with higher piezoelectric coefficient and electromechanical coupling coefficients, than [Formula: see text] . Experiments on bulk crystals and theoretical studies have shown that these properties can be tuned by varying the Si/Ge ratio in the [Formula: see text] solid solution. However, to the best of our knowledge, thin films of [Formula: see text] quartz have never been reported. Here we present the successful crystallization of [Formula: see text] thin films in the [Formula: see text] -quartz phase on quartz substrates ([Formula: see text] ) with x up to 0.75. Generally, the films grow semi-epitaxially, with the same orientation as the substrates. Interestingly, the [Formula: see text] composition grows fully strained by the quartz substrates and this leads to the formation of circular quartz domains with an ordered Dauphiné twin structure. These studies represent a first step towards the optimization of piezoelectric quartz thin films for high frequency (> 5 GHz) applications. |
---|