Cargando…

Synthesis and bioactivity of pyrrole-conjugated phosphopeptides

Here we report the synthesis and effect on the cell viability of pyrrole-conjugated phosphopeptides. Encouraged by the selective inhibition of cancer cells by a naphthyl-capped phosphopeptide (Nap-ff(p)y, 1), we conjugated the heteroaromatic dipyrrole or tripyrrole motif at the N-terminal of short p...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Qiuxin, Tan, Weiyi, Xu, Bing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8822458/
https://www.ncbi.nlm.nih.gov/pubmed/35186152
http://dx.doi.org/10.3762/bjoc.18.17
Descripción
Sumario:Here we report the synthesis and effect on the cell viability of pyrrole-conjugated phosphopeptides. Encouraged by the selective inhibition of cancer cells by a naphthyl-capped phosphopeptide (Nap-ff(p)y, 1), we conjugated the heteroaromatic dipyrrole or tripyrrole motif at the N-terminal of short peptides containing phosphotyrosine or phosphoserine and examined the bioactivity of the resulting phosphopeptides (2–10). Although most of the phosphopeptides exhibit comparable activities with that of 1 against HeLa cells at 200 μM, they, differing from 1, are largely compatible with HeLa cells at 400 μM. Enzymatic dephosphorylation of 2–10, at 400 μM is unable to induce a dramatic morphological transition of the peptide assemblies observed in the case of 1. These results suggest that a heteroaromatic motif at the N-terminal of peptides likely disfavors the formation of extensive nanofibers or morphological changes during enzymatic self-assembly, thus provide useful insights for the development of phosphopeptides as substrates of phosphatases for controlling cell fate.