Cargando…
Beware to ignore the rare: how imputing zero-values can improve the quality of 16S rRNA gene studies results
BACKGROUND: 16S rRNA-gene sequencing is a valuable approach to characterize the taxonomic content of the whole bacterial population inhabiting a metabolic and spatial niche, providing an important opportunity to study bacteria and their role in many health and environmental mechanisms. The analysis...
Autores principales: | Baruzzo, Giacomo, Patuzzi, Ilaria, Di Camillo, Barbara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8822630/ https://www.ncbi.nlm.nih.gov/pubmed/35130833 http://dx.doi.org/10.1186/s12859-022-04587-0 |
Ejemplares similares
-
metaSPARSim: a 16S rRNA gene sequencing count data simulator
por: Patuzzi, Ilaria, et al.
Publicado: (2019) -
Modeling Microbial Community Networks: Methods and Tools
por: Cappellato, Marco, et al.
Publicado: (2021) -
We should beware of ignoring uncomfortable possible truths (a reply to McManus et al)
por: Freeman, Daniel, et al.
Publicado: (2022) -
Missing value imputation in high-dimensional phenomic data: imputable or not, and how?
por: Liao, Serena G, et al.
Publicado: (2014) -
Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response
por: Yucel, Recai M.
Publicado: (2008)