Cargando…
Energy Efficiency of Inference Algorithms for Clinical Laboratory Data Sets: Green Artificial Intelligence Study
BACKGROUND: The use of artificial intelligence (AI) in the medical domain has attracted considerable research interest. Inference applications in the medical domain require energy-efficient AI models. In contrast to other types of data in visual AI, data from medical laboratories usually comprise fe...
Autores principales: | Yu, Jia-Ruei, Chen, Chun-Hsien, Huang, Tsung-Wei, Lu, Jang-Jih, Chung, Chia-Ru, Lin, Ting-Wei, Wu, Min-Hsien, Tseng, Yi-Ju, Wang, Hsin-Yao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8826151/ https://www.ncbi.nlm.nih.gov/pubmed/35076405 http://dx.doi.org/10.2196/28036 |
Ejemplares similares
-
Incorporating Statistical Test and Machine Intelligence Into Strain Typing of Staphylococcus haemolyticus Based on Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry
por: Chung, Chia-Ru, et al.
Publicado: (2019) -
Improving Multi-Tumor Biomarker Health Check-Up Tests with Machine Learning Algorithms
por: Wang, Hsin-Yao, et al.
Publicado: (2020) -
Investigating Unfavorable Factors That Impede MALDI-TOF-Based AI in Predicting Antibiotic Resistance
por: Wang, Hsin-Yao, et al.
Publicado: (2022) -
Deep into Laboratory: An Artificial Intelligence Approach to Recommend Laboratory Tests
por: Islam, Md. Mohaimenul, et al.
Publicado: (2021) -
Precision Psychiatry Applications with Pharmacogenomics: Artificial Intelligence and Machine Learning Approaches
por: Lin, Eugene, et al.
Publicado: (2020)