Cargando…
AlphaPilot: autonomous drone racing
This paper presents a novel system for autonomous, vision-based drone racing combining learned data abstraction, nonlinear filtering, and time-optimal trajectory planning. The system has successfully been deployed at the first autonomous drone racing world championship: the 2019 AlphaPilot Challenge...
Autores principales: | Foehn, Philipp, Brescianini, Dario, Kaufmann, Elia, Cieslewski, Titus, Gehrig, Mathias, Muglikar, Manasi, Scaramuzza, Davide |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8827337/ https://www.ncbi.nlm.nih.gov/pubmed/35221535 http://dx.doi.org/10.1007/s10514-021-10011-y |
Ejemplares similares
-
Champion-level drone racing using deep reinforcement learning
por: Kaufmann, Elia, et al.
Publicado: (2023) -
Visual attention prediction improves performance of autonomous drone racing agents
por: Pfeiffer, Christian, et al.
Publicado: (2022) -
DeepPilot: A CNN for Autonomous Drone Racing
por: Rojas-Perez, Leticia Oyuki, et al.
Publicado: (2020) -
Cracking double-blind review: Authorship attribution with deep learning
por: Bauersfeld, Leonard, et al.
Publicado: (2023) -
Towards Autonomous Drone Racing without GPU Using an OAK-D Smart Camera
por: Rojas-Perez, Leticia Oyuki, et al.
Publicado: (2021)