Cargando…
Raster plots machine learning to predict the seizure liability of drugs and to identify drugs
In vitro microelectrode array (MEA) assessment using human induced pluripotent stem cell (iPSC)-derived neurons holds promise as a method of seizure and toxicity evaluation. However, there are still issues surrounding the analysis methods used to predict seizure and toxicity liability as well as dru...
Autores principales: | Matsuda, N., Odawara, A., Kinoshita, K., Okamura, A., Shirakawa, T., Suzuki, I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8831568/ https://www.ncbi.nlm.nih.gov/pubmed/35145132 http://dx.doi.org/10.1038/s41598-022-05697-8 |
Ejemplares similares
-
Analysis of signal components < 500 Hz in brain organoids coupled to microelectrode arrays: A reliable test-bed for preclinical seizure liability assessment of drugs and screening of antiepileptic drugs
por: Yokoi, R., et al.
Publicado: (2021) -
Novel test strategies for in vitro seizure liability assessment
por: Tukker, Anke M., et al.
Publicado: (2021) -
Gene Expression Profile as a Predictor of Seizure Liability
por: Lipponen, Anssi, et al.
Publicado: (2023) -
Numerically controlled draughting machines: Part 2: monochrome raster plotters
por: International Organization for Standardization. Geneva
Publicado: (1999) -
Predicting Low-Level Childhood Lead Exposure in Metro Atlanta Using Ensemble Machine Learning of High-Resolution Raster Cells
por: Frndak, Seth, et al.
Publicado: (2023)