Cargando…
Diversity of Volatile Compounds in Raw Milk with Different n-6 to n-3 Fatty Acid Ratio
SIMPLE SUMMARY: In production, milk that is more beneficial to human health is obtained by adjusting the ratio of n-6 and n-3 fatty acids; however, the effect the regulation will have on the volatile substances in milk is unknown. In this study, gas chromatography–ion mobility spectrometry combined...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833492/ https://www.ncbi.nlm.nih.gov/pubmed/35158576 http://dx.doi.org/10.3390/ani12030252 |
Sumario: | SIMPLE SUMMARY: In production, milk that is more beneficial to human health is obtained by adjusting the ratio of n-6 and n-3 fatty acids; however, the effect the regulation will have on the volatile substances in milk is unknown. In this study, gas chromatography–ion mobility spectrometry combined with principal component analysis was used to establish the fingerprint of volatile substances in raw milk to identify the types of volatile substances. The results show that a total of 34 target compounds were identified, and there were differences in the types and contents of volatile compounds among different treatment groups. The main reason for these differences is that lipid is degraded and aldehydes and ketones are produced in the adjusted-proportion group. ABSTRACT: Fatty acid profiles may affect the flavor of milk. The diversity of volatile compounds in raw milk with different ratios of n-6 to n-3 fatty acids (8:1, 4:1, and 3:1) was studied. Gas chromatography–ion mobility spectroscopy (GC–IMS) is a promising technology for the accurate characterization and detection of volatile organic compounds in agricultural products, but its application in milk is rare or even unavailable. In this experiment, GC–IMS fingerprints along with principal component analysis (PCA) were used to study the flavor fingerprints of fresh milk samples with different percentages. Thirty-four typical target compounds were identified in total. A diversity of flavor compounds in raw milk with different n-6/n-3 was observed. After reduction of the proportion, the concentrations of volatile compounds, such as hexanoic acid (dimer and monomer), ethyl acetate, and 2-methylpropanoic acid (dimer and monomer) decreased, while those of 4-methyl-2-pentanone, pentanal, and acetone increased. We carried out PCA according to the signal strength of the identified volatile compounds, and the examination showed that it could precisely make a distinction among the samples in a comparative space. In conclusion, the results show that the volatile compounds are different as the proportion is different. The volatile compounds in raw milk are mainly hexanoic acid, ethyl acetate, and 2-methylpropanoic acid. After adjustment of the ratio, the flavor substances of the medium-ratio (MR) group were mainly ketones, while those of the low-ratio (LR) group were aldehydes. Therefore, in production, reducing the impact on volatile substances while adjusting the proportion of n-6 and n-3 fatty acids to obtain functional dairy products should be taken into consideration. |
---|