Cargando…

Evaluation of Strategies to Improve the Environmental and Economic Sustainability of Cow–Calf Production Systems

SIMPLE SUMMARY: Beef cattle have a significant contribution to greenhouse gas emissions globally, but they have a unique ability to digest plant material that is inedible for humans, thus producing human food from grasslands and rangelands. Additionally, many people around the world depend upon catt...

Descripción completa

Detalles Bibliográficos
Autores principales: Lancaster, Phillip A., Larson, Robert L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833546/
https://www.ncbi.nlm.nih.gov/pubmed/35158708
http://dx.doi.org/10.3390/ani12030385
_version_ 1784648970456268800
author Lancaster, Phillip A.
Larson, Robert L.
author_facet Lancaster, Phillip A.
Larson, Robert L.
author_sort Lancaster, Phillip A.
collection PubMed
description SIMPLE SUMMARY: Beef cattle have a significant contribution to greenhouse gas emissions globally, but they have a unique ability to digest plant material that is inedible for humans, thus producing human food from grasslands and rangelands. Additionally, many people around the world depend upon cattle ranching of grasslands and rangelands for their livelihoods. Identifying the strategies likely to have the largest impact on greenhouse gas emissions while improving or maintaining economic returns is necessary to guide future research. The goal of the current study was to evaluate four potential strategies for improving the environmental and economic sustainability of cow–calf production. The four strategies included (1) decreasing the feed required for maintenance, thus increasing the feed available for growth, (2) decreasing the time for cows to rebreed after calving, (3) increasing the digestibility of pasture grass, and (4) increasing the yield of pasture grass. A computer simulation model of a cow herd in Kansas, U.S.A., was modified to create variation in the four strategies. Decreasing the feed required for maintenance improved both environmental and economic sustainability, and increasing the yield of pasture grass improved economic sustainability, implying that these strategies should be primary targets to enhance the sustainability of cow–calf production systems. ABSTRACT: Grazing cow–calf production systems account for 60 to 70% of the greenhouse gas emissions of U.S. beef production. The objective of this analysis was to evaluate the importance of management strategies (cow maintenance energy requirements, reproductive efficiency, forage nutritive value, and forage yield) on the sustainability of cow–calf production systems using a sensitivity analysis in a production systems model. The Beef Cattle Systems Model was used to simulate a cow–calf production system in the Kansas Flint Hills using Angus genetics over a 24 year time period. The model was modified to create variation among cow herds in the base net energy for the maintenance requirement (NEm_Req), postpartum interval (PPI), grazed forage digestibility (Forage_TDN), and forage yield per hectare (Forage_Yield). The model was run for 1000 iterations/herds of a 100-cow herd. A stepwise regression analysis in conjunction with standardized regression analysis was used to identify important predictors of an indicator of greenhouse gas (GHG) emission intensity, dry matter intake per kilogram weaned, and two indicators of economic sustainability, winter feed use and returns over variable costs, using R statistical software. The most important predictor of DMI per kilogram weaned was calf weaning weight followed by NEm_Req, whereas returns over variable costs were primarily influenced by kilograms weaned per cow exposed and total purchased feed (supplement + winter feed), which were strongly influenced by NEm_Req and Forage_Yield, respectively. In conclusion, decreasing the net energy required for maintenance improved both economic and environmental sustainability, and increasing forage yield and length of the grazing season improved economic sustainability, implying that these strategies should be primary targets to enhance the sustainability of cow–calf production systems.
format Online
Article
Text
id pubmed-8833546
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-88335462022-02-12 Evaluation of Strategies to Improve the Environmental and Economic Sustainability of Cow–Calf Production Systems Lancaster, Phillip A. Larson, Robert L. Animals (Basel) Article SIMPLE SUMMARY: Beef cattle have a significant contribution to greenhouse gas emissions globally, but they have a unique ability to digest plant material that is inedible for humans, thus producing human food from grasslands and rangelands. Additionally, many people around the world depend upon cattle ranching of grasslands and rangelands for their livelihoods. Identifying the strategies likely to have the largest impact on greenhouse gas emissions while improving or maintaining economic returns is necessary to guide future research. The goal of the current study was to evaluate four potential strategies for improving the environmental and economic sustainability of cow–calf production. The four strategies included (1) decreasing the feed required for maintenance, thus increasing the feed available for growth, (2) decreasing the time for cows to rebreed after calving, (3) increasing the digestibility of pasture grass, and (4) increasing the yield of pasture grass. A computer simulation model of a cow herd in Kansas, U.S.A., was modified to create variation in the four strategies. Decreasing the feed required for maintenance improved both environmental and economic sustainability, and increasing the yield of pasture grass improved economic sustainability, implying that these strategies should be primary targets to enhance the sustainability of cow–calf production systems. ABSTRACT: Grazing cow–calf production systems account for 60 to 70% of the greenhouse gas emissions of U.S. beef production. The objective of this analysis was to evaluate the importance of management strategies (cow maintenance energy requirements, reproductive efficiency, forage nutritive value, and forage yield) on the sustainability of cow–calf production systems using a sensitivity analysis in a production systems model. The Beef Cattle Systems Model was used to simulate a cow–calf production system in the Kansas Flint Hills using Angus genetics over a 24 year time period. The model was modified to create variation among cow herds in the base net energy for the maintenance requirement (NEm_Req), postpartum interval (PPI), grazed forage digestibility (Forage_TDN), and forage yield per hectare (Forage_Yield). The model was run for 1000 iterations/herds of a 100-cow herd. A stepwise regression analysis in conjunction with standardized regression analysis was used to identify important predictors of an indicator of greenhouse gas (GHG) emission intensity, dry matter intake per kilogram weaned, and two indicators of economic sustainability, winter feed use and returns over variable costs, using R statistical software. The most important predictor of DMI per kilogram weaned was calf weaning weight followed by NEm_Req, whereas returns over variable costs were primarily influenced by kilograms weaned per cow exposed and total purchased feed (supplement + winter feed), which were strongly influenced by NEm_Req and Forage_Yield, respectively. In conclusion, decreasing the net energy required for maintenance improved both economic and environmental sustainability, and increasing forage yield and length of the grazing season improved economic sustainability, implying that these strategies should be primary targets to enhance the sustainability of cow–calf production systems. MDPI 2022-02-05 /pmc/articles/PMC8833546/ /pubmed/35158708 http://dx.doi.org/10.3390/ani12030385 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Lancaster, Phillip A.
Larson, Robert L.
Evaluation of Strategies to Improve the Environmental and Economic Sustainability of Cow–Calf Production Systems
title Evaluation of Strategies to Improve the Environmental and Economic Sustainability of Cow–Calf Production Systems
title_full Evaluation of Strategies to Improve the Environmental and Economic Sustainability of Cow–Calf Production Systems
title_fullStr Evaluation of Strategies to Improve the Environmental and Economic Sustainability of Cow–Calf Production Systems
title_full_unstemmed Evaluation of Strategies to Improve the Environmental and Economic Sustainability of Cow–Calf Production Systems
title_short Evaluation of Strategies to Improve the Environmental and Economic Sustainability of Cow–Calf Production Systems
title_sort evaluation of strategies to improve the environmental and economic sustainability of cow–calf production systems
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8833546/
https://www.ncbi.nlm.nih.gov/pubmed/35158708
http://dx.doi.org/10.3390/ani12030385
work_keys_str_mv AT lancasterphillipa evaluationofstrategiestoimprovetheenvironmentalandeconomicsustainabilityofcowcalfproductionsystems
AT larsonrobertl evaluationofstrategiestoimprovetheenvironmentalandeconomicsustainabilityofcowcalfproductionsystems