Cargando…
Kynurenic Acid and Its Analog SZR104 Exhibit Strong Antiinflammatory Effects and Alter the Intracellular Distribution and Methylation Patterns of H3 Histones in Immunochallenged Microglia-Enriched Cultures of Newborn Rat Brains
Kynurenic acid (KYNA) is implicated in antiinflammatory processes in the brain through several cellular and molecular targets, among which microglia-related mechanisms are of paramount importance. In this study, we describe the effects of KYNA and one of its analogs, the brain-penetrable SZR104 (N-(...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835130/ https://www.ncbi.nlm.nih.gov/pubmed/35163002 http://dx.doi.org/10.3390/ijms23031079 |
_version_ | 1784649353754836992 |
---|---|
author | Szabo, Melinda Lajkó, Noémi Dulka, Karolina Szatmári, István Fülöp, Ferenc Mihály, András Vécsei, László Gulya, Karoly |
author_facet | Szabo, Melinda Lajkó, Noémi Dulka, Karolina Szatmári, István Fülöp, Ferenc Mihály, András Vécsei, László Gulya, Karoly |
author_sort | Szabo, Melinda |
collection | PubMed |
description | Kynurenic acid (KYNA) is implicated in antiinflammatory processes in the brain through several cellular and molecular targets, among which microglia-related mechanisms are of paramount importance. In this study, we describe the effects of KYNA and one of its analogs, the brain-penetrable SZR104 (N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-hydroxyquinoline-2-carboxamide), on the intracellular distribution and methylation patterns of histone H3 in immunochallenged microglia cultures. Microglia-enriched secondary cultures made from newborn rat forebrains were immunochallenged with lipopolysaccharide (LPS). The protein levels of selected inflammatory markers C–X–C motif chemokine ligand 10 (CXCL10) and C–C motif chemokine receptor 1 (CCR1), histone H3, and posttranslational modifications of histone H3 lys methylation sites (H3K9me3 and H3K36me2, marks typically associated with opposite effects on gene expression) were analyzed using quantitative fluorescent immunocytochemistry and western blots in control or LPS-treated cultures with or without KYNA or SZR104. KYNA and SZR104 reduced levels of the inflammatory marker proteins CXCL10 and CCR1 after LPS-treatment. Moreover, KYNA and SZR104 favorably affected histone methylation patterns as H3K9me3 and H3K36me2 immunoreactivities, and histone H3 protein levels returned toward control values after LPS treatment. The cytoplasmic translocation of H3K9me3 from the nucleus indicated inflammatory distress, a process that could be inhibited by KYNA and SZR104. Thus, KYNA signaling and metabolism, and especially brain-penetrable KYNA analogs such as SZR104, could be key targets in the pathway that connects chromatin structure and epigenetic mechanisms with functional consequences that affect neuroinflammation and perhaps neurodegeneration. |
format | Online Article Text |
id | pubmed-8835130 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88351302022-02-12 Kynurenic Acid and Its Analog SZR104 Exhibit Strong Antiinflammatory Effects and Alter the Intracellular Distribution and Methylation Patterns of H3 Histones in Immunochallenged Microglia-Enriched Cultures of Newborn Rat Brains Szabo, Melinda Lajkó, Noémi Dulka, Karolina Szatmári, István Fülöp, Ferenc Mihály, András Vécsei, László Gulya, Karoly Int J Mol Sci Article Kynurenic acid (KYNA) is implicated in antiinflammatory processes in the brain through several cellular and molecular targets, among which microglia-related mechanisms are of paramount importance. In this study, we describe the effects of KYNA and one of its analogs, the brain-penetrable SZR104 (N-(2-(dimethylamino)ethyl)-3-(morpholinomethyl)-4-hydroxyquinoline-2-carboxamide), on the intracellular distribution and methylation patterns of histone H3 in immunochallenged microglia cultures. Microglia-enriched secondary cultures made from newborn rat forebrains were immunochallenged with lipopolysaccharide (LPS). The protein levels of selected inflammatory markers C–X–C motif chemokine ligand 10 (CXCL10) and C–C motif chemokine receptor 1 (CCR1), histone H3, and posttranslational modifications of histone H3 lys methylation sites (H3K9me3 and H3K36me2, marks typically associated with opposite effects on gene expression) were analyzed using quantitative fluorescent immunocytochemistry and western blots in control or LPS-treated cultures with or without KYNA or SZR104. KYNA and SZR104 reduced levels of the inflammatory marker proteins CXCL10 and CCR1 after LPS-treatment. Moreover, KYNA and SZR104 favorably affected histone methylation patterns as H3K9me3 and H3K36me2 immunoreactivities, and histone H3 protein levels returned toward control values after LPS treatment. The cytoplasmic translocation of H3K9me3 from the nucleus indicated inflammatory distress, a process that could be inhibited by KYNA and SZR104. Thus, KYNA signaling and metabolism, and especially brain-penetrable KYNA analogs such as SZR104, could be key targets in the pathway that connects chromatin structure and epigenetic mechanisms with functional consequences that affect neuroinflammation and perhaps neurodegeneration. MDPI 2022-01-19 /pmc/articles/PMC8835130/ /pubmed/35163002 http://dx.doi.org/10.3390/ijms23031079 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Szabo, Melinda Lajkó, Noémi Dulka, Karolina Szatmári, István Fülöp, Ferenc Mihály, András Vécsei, László Gulya, Karoly Kynurenic Acid and Its Analog SZR104 Exhibit Strong Antiinflammatory Effects and Alter the Intracellular Distribution and Methylation Patterns of H3 Histones in Immunochallenged Microglia-Enriched Cultures of Newborn Rat Brains |
title | Kynurenic Acid and Its Analog SZR104 Exhibit Strong Antiinflammatory Effects and Alter the Intracellular Distribution and Methylation Patterns of H3 Histones in Immunochallenged Microglia-Enriched Cultures of Newborn Rat Brains |
title_full | Kynurenic Acid and Its Analog SZR104 Exhibit Strong Antiinflammatory Effects and Alter the Intracellular Distribution and Methylation Patterns of H3 Histones in Immunochallenged Microglia-Enriched Cultures of Newborn Rat Brains |
title_fullStr | Kynurenic Acid and Its Analog SZR104 Exhibit Strong Antiinflammatory Effects and Alter the Intracellular Distribution and Methylation Patterns of H3 Histones in Immunochallenged Microglia-Enriched Cultures of Newborn Rat Brains |
title_full_unstemmed | Kynurenic Acid and Its Analog SZR104 Exhibit Strong Antiinflammatory Effects and Alter the Intracellular Distribution and Methylation Patterns of H3 Histones in Immunochallenged Microglia-Enriched Cultures of Newborn Rat Brains |
title_short | Kynurenic Acid and Its Analog SZR104 Exhibit Strong Antiinflammatory Effects and Alter the Intracellular Distribution and Methylation Patterns of H3 Histones in Immunochallenged Microglia-Enriched Cultures of Newborn Rat Brains |
title_sort | kynurenic acid and its analog szr104 exhibit strong antiinflammatory effects and alter the intracellular distribution and methylation patterns of h3 histones in immunochallenged microglia-enriched cultures of newborn rat brains |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8835130/ https://www.ncbi.nlm.nih.gov/pubmed/35163002 http://dx.doi.org/10.3390/ijms23031079 |
work_keys_str_mv | AT szabomelinda kynurenicacidanditsanalogszr104exhibitstrongantiinflammatoryeffectsandaltertheintracellulardistributionandmethylationpatternsofh3histonesinimmunochallengedmicrogliaenrichedculturesofnewbornratbrains AT lajkonoemi kynurenicacidanditsanalogszr104exhibitstrongantiinflammatoryeffectsandaltertheintracellulardistributionandmethylationpatternsofh3histonesinimmunochallengedmicrogliaenrichedculturesofnewbornratbrains AT dulkakarolina kynurenicacidanditsanalogszr104exhibitstrongantiinflammatoryeffectsandaltertheintracellulardistributionandmethylationpatternsofh3histonesinimmunochallengedmicrogliaenrichedculturesofnewbornratbrains AT szatmariistvan kynurenicacidanditsanalogszr104exhibitstrongantiinflammatoryeffectsandaltertheintracellulardistributionandmethylationpatternsofh3histonesinimmunochallengedmicrogliaenrichedculturesofnewbornratbrains AT fulopferenc kynurenicacidanditsanalogszr104exhibitstrongantiinflammatoryeffectsandaltertheintracellulardistributionandmethylationpatternsofh3histonesinimmunochallengedmicrogliaenrichedculturesofnewbornratbrains AT mihalyandras kynurenicacidanditsanalogszr104exhibitstrongantiinflammatoryeffectsandaltertheintracellulardistributionandmethylationpatternsofh3histonesinimmunochallengedmicrogliaenrichedculturesofnewbornratbrains AT vecseilaszlo kynurenicacidanditsanalogszr104exhibitstrongantiinflammatoryeffectsandaltertheintracellulardistributionandmethylationpatternsofh3histonesinimmunochallengedmicrogliaenrichedculturesofnewbornratbrains AT gulyakaroly kynurenicacidanditsanalogszr104exhibitstrongantiinflammatoryeffectsandaltertheintracellulardistributionandmethylationpatternsofh3histonesinimmunochallengedmicrogliaenrichedculturesofnewbornratbrains |