Cargando…

Problems with Evaluation of Micro-Pore Size in Silicon Carbide Using Synchrotron X-ray Phase Contrast Imaging

We report near- and far-field computer simulations of synchrotron X-ray phase-contrast images using a micropipe in a SiC crystal as a model system. Experimental images illustrate the theoretical results. The properties of nearly perfect single crystals of silicon carbide are strongly affected by μm-...

Descripción completa

Detalles Bibliográficos
Autores principales: Argunova, Tatiana S., Kohn, Victor G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836550/
https://www.ncbi.nlm.nih.gov/pubmed/35160800
http://dx.doi.org/10.3390/ma15030856
Descripción
Sumario:We report near- and far-field computer simulations of synchrotron X-ray phase-contrast images using a micropipe in a SiC crystal as a model system. Experimental images illustrate the theoretical results. The properties of nearly perfect single crystals of silicon carbide are strongly affected by μm-sized pores even if their distribution in a crystal bulk is sparse. A non-destructive technique to reveal the pores is in-line phase-contrast imaging with synchrotron radiation. A quantitative approach to evaluating pore sizes is the use of computer simulations of phase-contrast images. It was found that near-field phase-contrast images are formed at very short distances behind a sample. We estimated these distances for tiny pores. The Fresnel zones did not provide any information on the pore size in the far-field, but a contrast value within the first Fresnel zone could be used for simulations. Finally, general problems in evaluating a micro-pore size via image analysis are discussed.