Cargando…
Review of applications and challenges of quantitative systems pharmacology modeling and machine learning for heart failure
Quantitative systems pharmacology (QSP) is an important approach in pharmaceutical research and development that facilitates in silico generation of quantitative mechanistic hypotheses and enables in silico trials. As demonstrated by applications from numerous industry groups and interest from regul...
Autores principales: | Cheng, Limei, Qiu, Yuchi, Schmidt, Brian J., Wei, Guo-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8837528/ https://www.ncbi.nlm.nih.gov/pubmed/34637069 http://dx.doi.org/10.1007/s10928-021-09785-6 |
Ejemplares similares
-
Recent applications of quantitative systems pharmacology and machine learning models across diseases
por: Aghamiri, Sara Sadat, et al.
Publicado: (2021) -
The Comprehensive Machine Learning Analytics for Heart Failure
por: Guo, Chao-Yu, et al.
Publicado: (2021) -
Applications of artificial intelligence and machine learning in heart failure
por: Averbuch, Tauben, et al.
Publicado: (2022) -
Reproducibility of Quantitative Systems Pharmacology Models: Current Challenges and Future Opportunities
por: Kirouac, Daniel C., et al.
Publicado: (2019) -
Two heads are better than one: current landscape of integrating QSP and machine learning: An ISoP QSP SIG white paper by the working group on the integration of quantitative systems pharmacology and machine learning
por: Zhang, Tongli, et al.
Publicado: (2022)