Cargando…

Microbial and Chemical Profiles of Commercial Kombucha Products

Kombucha is an increasingly popular functional beverage that has gained attention for its unique combination of phytochemicals, metabolites, and microbes. Previous chemical and microbial composition analyses of kombucha have mainly focused on understanding their changes during fermentation. Very lim...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Jieping, Lagishetty, Venu, Kurnia, Patrick, Henning, Susanne M., Ahdoot, Aaron I., Jacobs, Jonathan P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838605/
https://www.ncbi.nlm.nih.gov/pubmed/35277029
http://dx.doi.org/10.3390/nu14030670
Descripción
Sumario:Kombucha is an increasingly popular functional beverage that has gained attention for its unique combination of phytochemicals, metabolites, and microbes. Previous chemical and microbial composition analyses of kombucha have mainly focused on understanding their changes during fermentation. Very limited information is available regarding nutrient profiles of final kombucha products in the market. In this study, we compared the major chemicals (tea polyphenols, caffeine), antioxidant properties, microbial and metabolomic profiles of nine commercial kombucha products using shotgun metagenomics, internal transcribed spacer sequencing, untargeted metabolomics, and targeted chemical assays. All of the nine kombucha products showed similar acidity but great differences in chemicals, metabolites, microbes, and antioxidant activities. Most kombucha products are dominated by the probiotic Bacillus coagulans or bacteria capable of fermentation including Lactobacillus nagelii, Gluconacetobacter, Gluconobacter, and Komagataeibacter species. We found that all nine kombuchas also contained varying levels of enteric bacteria including Bacteroides thetaiotamicron, Escherischia coli, Enterococcus faecalis, Bacteroides fragilis, Enterobacter cloacae complex, and Akkermansia muciniphila. The fungal composition of kombucha products was characterized by predominance of fermenting yeast including Brettanomyces species and Cyberlindnera jadinii. Kombucha varied widely in chemical content assessed by global untargeted metabolomics, with metabolomic variation being significantly associated with metagenomic profiles. Variation in tea bases, bacteria/yeast starter cultures, and duration of fermentation may all contribute to the observed large differences in the microbial and chemical profiles of final kombucha products.