Cargando…
Coalitional Distributed Model Predictive Control Strategy for Vehicle Platooning Applications
This work aims at developing and testing a novel Coalitional Distributed Model Predictive Control (C-DMPC) strategy suitable for vehicle platooning applications. The stability of the algorithm is ensured via the terminal constraint region formulation, with robust positively invariant sets. To ensure...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838681/ https://www.ncbi.nlm.nih.gov/pubmed/35161743 http://dx.doi.org/10.3390/s22030997 |
_version_ | 1784650186113417216 |
---|---|
author | Maxim, Anca Caruntu, Constantin-Florin |
author_facet | Maxim, Anca Caruntu, Constantin-Florin |
author_sort | Maxim, Anca |
collection | PubMed |
description | This work aims at developing and testing a novel Coalitional Distributed Model Predictive Control (C-DMPC) strategy suitable for vehicle platooning applications. The stability of the algorithm is ensured via the terminal constraint region formulation, with robust positively invariant sets. To ensure a greater flexibility, in the initialization part of the method, an invariant table set is created containing several invariant sets computed for different constraints values. The algorithm was tested in simulation, using both homogeneous and heterogeneous initial conditions for a platoon with four homogeneous vehicles, using a predecessor-following, uni-directionally communication topology. The simulation results show that the coalitions between vehicles are formed in the beginning of the experiment, when the local feasibility of each vehicle is lost. These findings successfully prove the usefulness of the proposed coalitional DMPC method in a vehicle platooning application, and illustrate the robustness of the algorithm, when tested in different initial conditions. |
format | Online Article Text |
id | pubmed-8838681 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-88386812022-02-13 Coalitional Distributed Model Predictive Control Strategy for Vehicle Platooning Applications Maxim, Anca Caruntu, Constantin-Florin Sensors (Basel) Article This work aims at developing and testing a novel Coalitional Distributed Model Predictive Control (C-DMPC) strategy suitable for vehicle platooning applications. The stability of the algorithm is ensured via the terminal constraint region formulation, with robust positively invariant sets. To ensure a greater flexibility, in the initialization part of the method, an invariant table set is created containing several invariant sets computed for different constraints values. The algorithm was tested in simulation, using both homogeneous and heterogeneous initial conditions for a platoon with four homogeneous vehicles, using a predecessor-following, uni-directionally communication topology. The simulation results show that the coalitions between vehicles are formed in the beginning of the experiment, when the local feasibility of each vehicle is lost. These findings successfully prove the usefulness of the proposed coalitional DMPC method in a vehicle platooning application, and illustrate the robustness of the algorithm, when tested in different initial conditions. MDPI 2022-01-27 /pmc/articles/PMC8838681/ /pubmed/35161743 http://dx.doi.org/10.3390/s22030997 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Maxim, Anca Caruntu, Constantin-Florin Coalitional Distributed Model Predictive Control Strategy for Vehicle Platooning Applications |
title | Coalitional Distributed Model Predictive Control Strategy for Vehicle Platooning Applications |
title_full | Coalitional Distributed Model Predictive Control Strategy for Vehicle Platooning Applications |
title_fullStr | Coalitional Distributed Model Predictive Control Strategy for Vehicle Platooning Applications |
title_full_unstemmed | Coalitional Distributed Model Predictive Control Strategy for Vehicle Platooning Applications |
title_short | Coalitional Distributed Model Predictive Control Strategy for Vehicle Platooning Applications |
title_sort | coalitional distributed model predictive control strategy for vehicle platooning applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838681/ https://www.ncbi.nlm.nih.gov/pubmed/35161743 http://dx.doi.org/10.3390/s22030997 |
work_keys_str_mv | AT maximanca coalitionaldistributedmodelpredictivecontrolstrategyforvehicleplatooningapplications AT caruntuconstantinflorin coalitionaldistributedmodelpredictivecontrolstrategyforvehicleplatooningapplications |