Cargando…

Effects of Apple Vinegar Addition on Aerobic Deterioration of Fermented High Moisture Maize Using Infrared Thermography as an Indicator

This study was carried out to determine the effects of apple vinegar and sodium diacetate addition on the aerobic stability of fermented high moisture maize grain (HMM) silage after opening. In the study, the effect of three different levels (0%, 0.5% and 1%) of apple vinegar (AV) and sodium diaceta...

Descripción completa

Detalles Bibliográficos
Autores principales: Agma Okur, Aylin, Gozluklu, Kerem, Okur, Ersen, Okuyucu, Berrin, Koc, Fisun, Ozduven, Mehmet Levent
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8838708/
https://www.ncbi.nlm.nih.gov/pubmed/35161518
http://dx.doi.org/10.3390/s22030771
Descripción
Sumario:This study was carried out to determine the effects of apple vinegar and sodium diacetate addition on the aerobic stability of fermented high moisture maize grain (HMM) silage after opening. In the study, the effect of three different levels (0%, 0.5% and 1%) of apple vinegar (AV) and sodium diacetate (SDA) supplementation to fermented HMM at two different storage conditions (27–29 °C, 48% Humidity; 35–37 °C, 26% Humidity) were investigated. The material of the study was fermented rolled maize grain with 62% moisture content stored for about 120 days. Silage samples were subjected to aerobic stability test with three replicates for each treatment group. Wendee and microbiological analyses were made at 0, 2, 4, 7, and 12 days. Meanwhile, samples were displayed in the T200 IR brand thermal camera. According to the thermogram results, 1% SDA addition positively affected HMM silages at the second and fourth days of aerobic stability at both storage conditions (p < 0.05). Aerobic stability and infrared thermography analysis indicated that 1% AV, 0.5%, and 1% SDA additions to HMM silages had promising effects. Due to our results, we concluded that thermal camera images might be used as an alternative quality indicator for silages in laboratory conditions.