Cargando…
An Adaptive Learning Model for Multiscale Texture Features in Polyp Classification via Computed Tomographic Colonography
Objective: As an effective lesion heterogeneity depiction, texture information extracted from computed tomography has become increasingly important in polyp classification. However, variation and redundancy among multiple texture descriptors render a challenging task of integrating them into a gener...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840570/ https://www.ncbi.nlm.nih.gov/pubmed/35161653 http://dx.doi.org/10.3390/s22030907 |