Cargando…
An Adaptive Learning Model for Multiscale Texture Features in Polyp Classification via Computed Tomographic Colonography
Objective: As an effective lesion heterogeneity depiction, texture information extracted from computed tomography has become increasingly important in polyp classification. However, variation and redundancy among multiple texture descriptors render a challenging task of integrating them into a gener...
Autores principales: | Cao, Weiguo, Pomeroy, Marc J., Zhang, Shu, Tan, Jiaxing, Liang, Zhengrong, Gao, Yongfeng, Abbasi, Almas F., Pickhardt, Perry J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840570/ https://www.ncbi.nlm.nih.gov/pubmed/35161653 http://dx.doi.org/10.3390/s22030907 |
Ejemplares similares
-
Multi-scale characterizations of colon polyps via computed tomographic colonography
por: Cao, Weiguo, et al.
Publicado: (2019) -
Vector textures derived from higher order derivative domains for classification of colorectal polyps
por: Cao, Weiguo, et al.
Publicado: (2022) -
Computer-aided detection of colonic polyps with level set-based adaptive convolution in volumetric mucosa to advance CT colonography toward a screening modality
por: Zhu, Hongbin, et al.
Publicado: (2009) -
A dynamic lesion model for differentiation of malignant and benign pathologies
por: Cao, Weiguo, et al.
Publicado: (2021) -
Associations among Pericolonic Fat, Visceral Fat, and Colorectal Polyps on CT Colonography
por: Liu, Jiamin, et al.
Publicado: (2014)