Cargando…

Proper control of R‐loop homeostasis is required for maintenance of gene expression and neuronal function during aging

Age‐related loss of cellular function and increased cell death are characteristic hallmarks of aging. While defects in gene expression and RNA metabolism have been linked with age‐associated human neuropathies, it is not clear how the changes that occur in aging neurons contribute to loss of gene ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Jauregui‐Lozano, Juan, Escobedo, Spencer, Easton, Alyssa, Lanman, Nadia A., Weake, Vikki M., Hall, Hana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8844117/
https://www.ncbi.nlm.nih.gov/pubmed/35048512
http://dx.doi.org/10.1111/acel.13554
Descripción
Sumario:Age‐related loss of cellular function and increased cell death are characteristic hallmarks of aging. While defects in gene expression and RNA metabolism have been linked with age‐associated human neuropathies, it is not clear how the changes that occur in aging neurons contribute to loss of gene expression homeostasis. R‐loops are RNA–DNA hybrids that typically form co‐transcriptionally via annealing of the nascent RNA to the template DNA strand, displacing the non‐template DNA strand. Dysregulation of R‐loop homeostasis has been associated with both transcriptional impairment and genome instability. Importantly, a growing body of evidence links R‐loop accumulation with cellular dysfunction, increased cell death, and chronic disease onset. Here, we characterized the R‐loop landscape in aging Drosophila melanogaster photoreceptor neurons and showed that bulk R‐loop levels increased with age. Further, genome‐wide mapping of R‐loops revealed that transcribed genes accumulated R‐loops over gene bodies during aging, which correlated with decreased expression of long and highly expressed genes. Importantly, while photoreceptor‐specific down‐regulation of Top3β, a DNA/RNA topoisomerase associated with R‐loop resolution, lead to decreased visual function, over‐expression of Top3β or nuclear‐localized RNase H1, which resolves R‐loops, enhanced positive light response during aging. Together, our studies highlight the functional link between dysregulation of R‐loop homeostasis, gene expression, and visual function during aging.