Cargando…
Analyses of internal structures and defects in materials using physics-informed neural networks
Characterizing internal structures and defects in materials is a challenging task, often requiring solutions to inverse problems with unknown topology, geometry, material properties, and nonlinear deformation. Here, we present a general framework based on physics-informed neural networks for identif...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8849303/ https://www.ncbi.nlm.nih.gov/pubmed/35171670 http://dx.doi.org/10.1126/sciadv.abk0644 |