Cargando…
Analyses of internal structures and defects in materials using physics-informed neural networks
Characterizing internal structures and defects in materials is a challenging task, often requiring solutions to inverse problems with unknown topology, geometry, material properties, and nonlinear deformation. Here, we present a general framework based on physics-informed neural networks for identif...
Autores principales: | Zhang, Enrui, Dao, Ming, Karniadakis, George Em, Suresh, Subra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8849303/ https://www.ncbi.nlm.nih.gov/pubmed/35171670 http://dx.doi.org/10.1126/sciadv.abk0644 |
Ejemplares similares
-
Extraction of mechanical properties of materials through deep learning from instrumented indentation
por: Lu, Lu, et al.
Publicado: (2020) -
Patient-specific modeling of individual sickle cell behavior under transient hypoxia
por: Li, Xuejin, et al.
Publicado: (2017) -
Physics-informed neural networks for predicting gas flow dynamics and unknown parameters in diesel engines
por: Nath, Kamaljyoti, et al.
Publicado: (2023) -
Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease
por: Cai, Shengze, et al.
Publicado: (2021) -
G2Φnet: Relating genotype and biomechanical phenotype of tissues with deep learning
por: Zhang, Enrui, et al.
Publicado: (2022)