Cargando…
Cysteine Oxidation of Copper transporter SLC31A1/CTR1, drives VEGFR2 signaling and Angiogenesis
VEGFR2 (KDR/Flk1) signaling in endothelial cells (ECs) is essential for developmental and reparative angiogenesis. Reactive oxygen species (ROS) and copper (Cu) are also involved.in these processes. However, their inter-relationship is poorly understood. The role of endothelial Cu importer CTR1 in V...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851982/ https://www.ncbi.nlm.nih.gov/pubmed/35027734 http://dx.doi.org/10.1038/s41556-021-00822-7 |
_version_ | 1784652938739712000 |
---|---|
author | Das, Archita Ash, Dipankar Fouda, Abdelrahman Y. Sudhahar, Varadarajan Kim, Young-Mee Hou, Yali Hudson, Farlyn Z Stansfield, Brian K Caldwell, Ruth B. McMenamin, Maggie Littlejohn, Rodney Su, Huabo Regan, Maureen R. Merrill, Bradley J. Poole, Leslie B. Kaplan, Jack H. Fukai, Tohru Ushio-Fukai, Masuko |
author_facet | Das, Archita Ash, Dipankar Fouda, Abdelrahman Y. Sudhahar, Varadarajan Kim, Young-Mee Hou, Yali Hudson, Farlyn Z Stansfield, Brian K Caldwell, Ruth B. McMenamin, Maggie Littlejohn, Rodney Su, Huabo Regan, Maureen R. Merrill, Bradley J. Poole, Leslie B. Kaplan, Jack H. Fukai, Tohru Ushio-Fukai, Masuko |
author_sort | Das, Archita |
collection | PubMed |
description | VEGFR2 (KDR/Flk1) signaling in endothelial cells (ECs) is essential for developmental and reparative angiogenesis. Reactive oxygen species (ROS) and copper (Cu) are also involved.in these processes. However, their inter-relationship is poorly understood. The role of endothelial Cu importer CTR1 in VEGFR2 signaling and angiogenesis in vivo is hitherto unknown. Here we show that CTR1 functions as a previously unrecognized redox sensor to promote angiogenesis in ECs. CTR1-depleted ECs showed reduced VEGF-induced VEGFR2 signaling and angiogenic responses. Mechanistically, CTR1 was rapidly sulfenylated at Cys189 in cytosolic C-terminus upon VEGF stimulation, which induced CTR1-VEGFR2 disulfide bond formation and their co-internalization to early endosomes, driving sustained VEGFR2 signaling. In vivo, EC-specific Ctr1-deficient mice or CRISPR/Cas9-generated “redox-dead” Cys to Ala Ctr1 knock-in mutant mice had impaired developmental and reparative angiogenesis. Thus, oxidation of CTR1 at Cys189 promotes VEGFR2 internalization and signaling to enhance angiogenesis. Our study uncovers an important mechanism for ROS sensing through CTR1 to drive neovascularization. |
format | Online Article Text |
id | pubmed-8851982 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-88519822022-07-13 Cysteine Oxidation of Copper transporter SLC31A1/CTR1, drives VEGFR2 signaling and Angiogenesis Das, Archita Ash, Dipankar Fouda, Abdelrahman Y. Sudhahar, Varadarajan Kim, Young-Mee Hou, Yali Hudson, Farlyn Z Stansfield, Brian K Caldwell, Ruth B. McMenamin, Maggie Littlejohn, Rodney Su, Huabo Regan, Maureen R. Merrill, Bradley J. Poole, Leslie B. Kaplan, Jack H. Fukai, Tohru Ushio-Fukai, Masuko Nat Cell Biol Article VEGFR2 (KDR/Flk1) signaling in endothelial cells (ECs) is essential for developmental and reparative angiogenesis. Reactive oxygen species (ROS) and copper (Cu) are also involved.in these processes. However, their inter-relationship is poorly understood. The role of endothelial Cu importer CTR1 in VEGFR2 signaling and angiogenesis in vivo is hitherto unknown. Here we show that CTR1 functions as a previously unrecognized redox sensor to promote angiogenesis in ECs. CTR1-depleted ECs showed reduced VEGF-induced VEGFR2 signaling and angiogenic responses. Mechanistically, CTR1 was rapidly sulfenylated at Cys189 in cytosolic C-terminus upon VEGF stimulation, which induced CTR1-VEGFR2 disulfide bond formation and their co-internalization to early endosomes, driving sustained VEGFR2 signaling. In vivo, EC-specific Ctr1-deficient mice or CRISPR/Cas9-generated “redox-dead” Cys to Ala Ctr1 knock-in mutant mice had impaired developmental and reparative angiogenesis. Thus, oxidation of CTR1 at Cys189 promotes VEGFR2 internalization and signaling to enhance angiogenesis. Our study uncovers an important mechanism for ROS sensing through CTR1 to drive neovascularization. 2022-01 2022-01-13 /pmc/articles/PMC8851982/ /pubmed/35027734 http://dx.doi.org/10.1038/s41556-021-00822-7 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms |
spellingShingle | Article Das, Archita Ash, Dipankar Fouda, Abdelrahman Y. Sudhahar, Varadarajan Kim, Young-Mee Hou, Yali Hudson, Farlyn Z Stansfield, Brian K Caldwell, Ruth B. McMenamin, Maggie Littlejohn, Rodney Su, Huabo Regan, Maureen R. Merrill, Bradley J. Poole, Leslie B. Kaplan, Jack H. Fukai, Tohru Ushio-Fukai, Masuko Cysteine Oxidation of Copper transporter SLC31A1/CTR1, drives VEGFR2 signaling and Angiogenesis |
title | Cysteine Oxidation of Copper transporter SLC31A1/CTR1, drives VEGFR2 signaling and Angiogenesis |
title_full | Cysteine Oxidation of Copper transporter SLC31A1/CTR1, drives VEGFR2 signaling and Angiogenesis |
title_fullStr | Cysteine Oxidation of Copper transporter SLC31A1/CTR1, drives VEGFR2 signaling and Angiogenesis |
title_full_unstemmed | Cysteine Oxidation of Copper transporter SLC31A1/CTR1, drives VEGFR2 signaling and Angiogenesis |
title_short | Cysteine Oxidation of Copper transporter SLC31A1/CTR1, drives VEGFR2 signaling and Angiogenesis |
title_sort | cysteine oxidation of copper transporter slc31a1/ctr1, drives vegfr2 signaling and angiogenesis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8851982/ https://www.ncbi.nlm.nih.gov/pubmed/35027734 http://dx.doi.org/10.1038/s41556-021-00822-7 |
work_keys_str_mv | AT dasarchita cysteineoxidationofcoppertransporterslc31a1ctr1drivesvegfr2signalingandangiogenesis AT ashdipankar cysteineoxidationofcoppertransporterslc31a1ctr1drivesvegfr2signalingandangiogenesis AT foudaabdelrahmany cysteineoxidationofcoppertransporterslc31a1ctr1drivesvegfr2signalingandangiogenesis AT sudhaharvaradarajan cysteineoxidationofcoppertransporterslc31a1ctr1drivesvegfr2signalingandangiogenesis AT kimyoungmee cysteineoxidationofcoppertransporterslc31a1ctr1drivesvegfr2signalingandangiogenesis AT houyali cysteineoxidationofcoppertransporterslc31a1ctr1drivesvegfr2signalingandangiogenesis AT hudsonfarlynz cysteineoxidationofcoppertransporterslc31a1ctr1drivesvegfr2signalingandangiogenesis AT stansfieldbriank cysteineoxidationofcoppertransporterslc31a1ctr1drivesvegfr2signalingandangiogenesis AT caldwellruthb cysteineoxidationofcoppertransporterslc31a1ctr1drivesvegfr2signalingandangiogenesis AT mcmenaminmaggie cysteineoxidationofcoppertransporterslc31a1ctr1drivesvegfr2signalingandangiogenesis AT littlejohnrodney cysteineoxidationofcoppertransporterslc31a1ctr1drivesvegfr2signalingandangiogenesis AT suhuabo cysteineoxidationofcoppertransporterslc31a1ctr1drivesvegfr2signalingandangiogenesis AT reganmaureenr cysteineoxidationofcoppertransporterslc31a1ctr1drivesvegfr2signalingandangiogenesis AT merrillbradleyj cysteineoxidationofcoppertransporterslc31a1ctr1drivesvegfr2signalingandangiogenesis AT pooleleslieb cysteineoxidationofcoppertransporterslc31a1ctr1drivesvegfr2signalingandangiogenesis AT kaplanjackh cysteineoxidationofcoppertransporterslc31a1ctr1drivesvegfr2signalingandangiogenesis AT fukaitohru cysteineoxidationofcoppertransporterslc31a1ctr1drivesvegfr2signalingandangiogenesis AT ushiofukaimasuko cysteineoxidationofcoppertransporterslc31a1ctr1drivesvegfr2signalingandangiogenesis |