Cargando…
DecOT: Bulk Deconvolution With Optimal Transport Loss Using a Single-Cell Reference
Tissues are constituted of heterogeneous cell types. Although single-cell RNA sequencing has paved the way to a deeper understanding of organismal cellular composition, the high cost and technical noise have prevented its wide application. As an alternative, computational deconvolution of bulk tissu...
Autores principales: | Liu, Gan, Liu, Xiuqin, Ma, Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8855157/ https://www.ncbi.nlm.nih.gov/pubmed/35186040 http://dx.doi.org/10.3389/fgene.2022.825896 |
Ejemplares similares
-
LFSC: A linear fast semi-supervised clustering algorithm that integrates reference-bulk and single-cell transcriptomes
por: Liu, Qiaoming, et al.
Publicado: (2022) -
Bulk tissue cell type deconvolution with multi-subject single-cell expression reference
por: Wang, Xuran, et al.
Publicado: (2019) -
SCDC: bulk gene expression deconvolution by multiple single-cell RNA sequencing references
por: Dong, Meichen, et al.
Publicado: (2020) -
Likelihood-based deconvolution of bulk gene expression data using single-cell references
por: Erdmann-Pham, Dan D., et al.
Publicado: (2021) -
Reference Transcriptomes of Porcine Peripheral Immune Cells Created Through Bulk and Single-Cell RNA Sequencing
por: Herrera-Uribe, Juber, et al.
Publicado: (2021)