Cargando…
A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways
The lysosome is the major catabolic organelle in the cell that has been established as a key metabolic signaling center. Mutations in many lysosomal proteins have catastrophic effects and cause neurodegeneration, cancer, and age-related diseases. The vacuole is the lysosomal analog of Saccharomyces...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8859911/ https://www.ncbi.nlm.nih.gov/pubmed/35175277 http://dx.doi.org/10.1083/jcb.202107148 |
_version_ | 1784654556949381120 |
---|---|
author | Eising, Sebastian Esch, Bianca Wälte, Mike Vargas Duarte, Prado Walter, Stefan Ungermann, Christian Bohnert, Maria Fröhlich, Florian |
author_facet | Eising, Sebastian Esch, Bianca Wälte, Mike Vargas Duarte, Prado Walter, Stefan Ungermann, Christian Bohnert, Maria Fröhlich, Florian |
author_sort | Eising, Sebastian |
collection | PubMed |
description | The lysosome is the major catabolic organelle in the cell that has been established as a key metabolic signaling center. Mutations in many lysosomal proteins have catastrophic effects and cause neurodegeneration, cancer, and age-related diseases. The vacuole is the lysosomal analog of Saccharomyces cerevisiae that harbors many evolutionary conserved proteins. Proteins reach vacuoles via the Vps10-dependent endosomal vacuolar protein sorting pathway, via the alkaline phosphatase (ALP or AP-3) pathway, and via the cytosol-to-vacuole transport (CVT) pathway. A systematic understanding of the cargo spectrum of each pathway is completely lacking. Here, we use quantitative proteomics of purified vacuoles to generate the yeast lysosomal biogenesis map. This dataset harbors information on the cargo–receptor relationship of almost all vacuolar proteins. We map binding motifs of Vps10 and the AP-3 complex and identify a novel cargo of the CVT pathway under nutrient-rich conditions. Our data show how organelle purification and quantitative proteomics can uncover fundamental insights into organelle biogenesis. |
format | Online Article Text |
id | pubmed-8859911 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-88599112022-10-04 A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways Eising, Sebastian Esch, Bianca Wälte, Mike Vargas Duarte, Prado Walter, Stefan Ungermann, Christian Bohnert, Maria Fröhlich, Florian J Cell Biol Tools The lysosome is the major catabolic organelle in the cell that has been established as a key metabolic signaling center. Mutations in many lysosomal proteins have catastrophic effects and cause neurodegeneration, cancer, and age-related diseases. The vacuole is the lysosomal analog of Saccharomyces cerevisiae that harbors many evolutionary conserved proteins. Proteins reach vacuoles via the Vps10-dependent endosomal vacuolar protein sorting pathway, via the alkaline phosphatase (ALP or AP-3) pathway, and via the cytosol-to-vacuole transport (CVT) pathway. A systematic understanding of the cargo spectrum of each pathway is completely lacking. Here, we use quantitative proteomics of purified vacuoles to generate the yeast lysosomal biogenesis map. This dataset harbors information on the cargo–receptor relationship of almost all vacuolar proteins. We map binding motifs of Vps10 and the AP-3 complex and identify a novel cargo of the CVT pathway under nutrient-rich conditions. Our data show how organelle purification and quantitative proteomics can uncover fundamental insights into organelle biogenesis. Rockefeller University Press 2022-02-16 /pmc/articles/PMC8859911/ /pubmed/35175277 http://dx.doi.org/10.1083/jcb.202107148 Text en © 2022 Eising et al. https://creativecommons.org/licenses/by-nc-sa/4.0/http://www.rupress.org/terms/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Tools Eising, Sebastian Esch, Bianca Wälte, Mike Vargas Duarte, Prado Walter, Stefan Ungermann, Christian Bohnert, Maria Fröhlich, Florian A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways |
title | A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways |
title_full | A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways |
title_fullStr | A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways |
title_full_unstemmed | A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways |
title_short | A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways |
title_sort | lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways |
topic | Tools |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8859911/ https://www.ncbi.nlm.nih.gov/pubmed/35175277 http://dx.doi.org/10.1083/jcb.202107148 |
work_keys_str_mv | AT eisingsebastian alysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways AT eschbianca alysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways AT waltemike alysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways AT vargasduarteprado alysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways AT walterstefan alysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways AT ungermannchristian alysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways AT bohnertmaria alysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways AT frohlichflorian alysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways AT eisingsebastian lysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways AT eschbianca lysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways AT waltemike lysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways AT vargasduarteprado lysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways AT walterstefan lysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways AT ungermannchristian lysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways AT bohnertmaria lysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways AT frohlichflorian lysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways |