Cargando…

A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways

The lysosome is the major catabolic organelle in the cell that has been established as a key metabolic signaling center. Mutations in many lysosomal proteins have catastrophic effects and cause neurodegeneration, cancer, and age-related diseases. The vacuole is the lysosomal analog of Saccharomyces...

Descripción completa

Detalles Bibliográficos
Autores principales: Eising, Sebastian, Esch, Bianca, Wälte, Mike, Vargas Duarte, Prado, Walter, Stefan, Ungermann, Christian, Bohnert, Maria, Fröhlich, Florian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8859911/
https://www.ncbi.nlm.nih.gov/pubmed/35175277
http://dx.doi.org/10.1083/jcb.202107148
_version_ 1784654556949381120
author Eising, Sebastian
Esch, Bianca
Wälte, Mike
Vargas Duarte, Prado
Walter, Stefan
Ungermann, Christian
Bohnert, Maria
Fröhlich, Florian
author_facet Eising, Sebastian
Esch, Bianca
Wälte, Mike
Vargas Duarte, Prado
Walter, Stefan
Ungermann, Christian
Bohnert, Maria
Fröhlich, Florian
author_sort Eising, Sebastian
collection PubMed
description The lysosome is the major catabolic organelle in the cell that has been established as a key metabolic signaling center. Mutations in many lysosomal proteins have catastrophic effects and cause neurodegeneration, cancer, and age-related diseases. The vacuole is the lysosomal analog of Saccharomyces cerevisiae that harbors many evolutionary conserved proteins. Proteins reach vacuoles via the Vps10-dependent endosomal vacuolar protein sorting pathway, via the alkaline phosphatase (ALP or AP-3) pathway, and via the cytosol-to-vacuole transport (CVT) pathway. A systematic understanding of the cargo spectrum of each pathway is completely lacking. Here, we use quantitative proteomics of purified vacuoles to generate the yeast lysosomal biogenesis map. This dataset harbors information on the cargo–receptor relationship of almost all vacuolar proteins. We map binding motifs of Vps10 and the AP-3 complex and identify a novel cargo of the CVT pathway under nutrient-rich conditions. Our data show how organelle purification and quantitative proteomics can uncover fundamental insights into organelle biogenesis.
format Online
Article
Text
id pubmed-8859911
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-88599112022-10-04 A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways Eising, Sebastian Esch, Bianca Wälte, Mike Vargas Duarte, Prado Walter, Stefan Ungermann, Christian Bohnert, Maria Fröhlich, Florian J Cell Biol Tools The lysosome is the major catabolic organelle in the cell that has been established as a key metabolic signaling center. Mutations in many lysosomal proteins have catastrophic effects and cause neurodegeneration, cancer, and age-related diseases. The vacuole is the lysosomal analog of Saccharomyces cerevisiae that harbors many evolutionary conserved proteins. Proteins reach vacuoles via the Vps10-dependent endosomal vacuolar protein sorting pathway, via the alkaline phosphatase (ALP or AP-3) pathway, and via the cytosol-to-vacuole transport (CVT) pathway. A systematic understanding of the cargo spectrum of each pathway is completely lacking. Here, we use quantitative proteomics of purified vacuoles to generate the yeast lysosomal biogenesis map. This dataset harbors information on the cargo–receptor relationship of almost all vacuolar proteins. We map binding motifs of Vps10 and the AP-3 complex and identify a novel cargo of the CVT pathway under nutrient-rich conditions. Our data show how organelle purification and quantitative proteomics can uncover fundamental insights into organelle biogenesis. Rockefeller University Press 2022-02-16 /pmc/articles/PMC8859911/ /pubmed/35175277 http://dx.doi.org/10.1083/jcb.202107148 Text en © 2022 Eising et al. https://creativecommons.org/licenses/by-nc-sa/4.0/http://www.rupress.org/terms/This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Tools
Eising, Sebastian
Esch, Bianca
Wälte, Mike
Vargas Duarte, Prado
Walter, Stefan
Ungermann, Christian
Bohnert, Maria
Fröhlich, Florian
A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways
title A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways
title_full A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways
title_fullStr A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways
title_full_unstemmed A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways
title_short A lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways
title_sort lysosomal biogenesis map reveals the cargo spectrum of yeast vacuolar protein targeting pathways
topic Tools
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8859911/
https://www.ncbi.nlm.nih.gov/pubmed/35175277
http://dx.doi.org/10.1083/jcb.202107148
work_keys_str_mv AT eisingsebastian alysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways
AT eschbianca alysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways
AT waltemike alysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways
AT vargasduarteprado alysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways
AT walterstefan alysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways
AT ungermannchristian alysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways
AT bohnertmaria alysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways
AT frohlichflorian alysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways
AT eisingsebastian lysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways
AT eschbianca lysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways
AT waltemike lysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways
AT vargasduarteprado lysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways
AT walterstefan lysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways
AT ungermannchristian lysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways
AT bohnertmaria lysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways
AT frohlichflorian lysosomalbiogenesismaprevealsthecargospectrumofyeastvacuolarproteintargetingpathways