Cargando…
High-precision micro-displacement sensor based on tunnel magneto-resistance effect
A high-precision micro-displacement sensor based on tunnel magneto-resistance effect is reported.We designed and simulated magnetic characteristics of the sensor, and employed chip-level Au-In bonding to implement low-temperature assembly of the TMR devices. We employed the subdivision interpolation...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8863979/ https://www.ncbi.nlm.nih.gov/pubmed/35194114 http://dx.doi.org/10.1038/s41598-022-06965-3 |
Sumario: | A high-precision micro-displacement sensor based on tunnel magneto-resistance effect is reported.We designed and simulated magnetic characteristics of the sensor, and employed chip-level Au-In bonding to implement low-temperature assembly of the TMR devices. We employed the subdivision interpolation technique to enhance the resolution by translating the sine-cosine outputs of a TMR sensor into an output that varies linearly with the displacement. Simultaneously, using the multi-bridge circuit method to suppress external magnetic and geomagnetic interference. Experimental result shows that the micro-displacement sensor has a resolution of 800 nm, accuracy of 0.14[Formula: see text] and a full-scale range of up to millimeter level. This work enables a high-performance displacement sensor, and provides a significant guide for the design of a micro-displacement sensor in practical applications. |
---|