Cargando…
Fortilin interacts with TGF-β1 and prevents TGF-β receptor activation
Fortilin is a 172-amino acid multifunctional protein present in both intra- and extracellular spaces. Although fortilin binds and regulates various cellular proteins, the biological role of extracellular fortilin remains unknown. Here we report that fortilin specifically interacts with TGF-β1 and pr...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8866402/ https://www.ncbi.nlm.nih.gov/pubmed/35197550 http://dx.doi.org/10.1038/s42003-022-03112-6 |
Sumario: | Fortilin is a 172-amino acid multifunctional protein present in both intra- and extracellular spaces. Although fortilin binds and regulates various cellular proteins, the biological role of extracellular fortilin remains unknown. Here we report that fortilin specifically interacts with TGF-β1 and prevents it from activating the TGF-β1 signaling pathway. In a standard immunoprecipitation-western blot assay, fortilin co-immunoprecipitates TGF-β1 and its isoforms. The modified ELISA assay shows that TGF-β1 remains complexed with fortilin in human serum. Both bio-layer interferometry and surface plasmon resonance (SPR) reveal that fortilin directly bind TGF-β1. The SPR analysis also reveals that fortilin and the TGF-β receptor II (TGFβRII) compete for TGF-β1. Both luciferase and secreted alkaline phosphatase reporter assays show that fortilin prevents TGF-β1 from activating Smad3 binding to Smad-binding element. Fortilin inhibits the phosphorylation of Smad3 in both quantitative western blot assays and ELISA. Finally, fortilin inhibits TGFβ-1-induced differentiation of C3H10T1/2 mesenchymal progenitor cells to smooth muscle cells. A computer-assisted virtual docking reveals that fortilin occupies the pocket of TGF-β1 that is normally occupied by TGFβRII and that TGF-β1 can bind either fortilin or TGFβRII at any given time. These data support the role of extracellular fortilin as a negative regulator of the TGF-β1 signaling pathway. |
---|