Cargando…
Deep neural network prediction of genome-wide transcriptome signatures – beyond the Black-box
Prediction algorithms for protein or gene structures, including transcription factor binding from sequence information, have been transformative in understanding gene regulation. Here we ask whether human transcriptomic profiles can be predicted solely from the expression of transcription factors (T...
Autores principales: | Magnusson, Rasmus, Tegnér, Jesper N., Gustafsson, Mika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8866467/ https://www.ncbi.nlm.nih.gov/pubmed/35197482 http://dx.doi.org/10.1038/s41540-022-00218-9 |
Ejemplares similares
-
Illuminating the Black Box: Interpreting Deep Neural Network Models for Psychiatric Research
por: Sheu, Yi-han
Publicado: (2020) -
Deriving disease modules from the compressed transcriptional space embedded in a deep autoencoder
por: Dwivedi, Sanjiv K., et al.
Publicado: (2020) -
Bone stimulators: Beyond the black box
por: Bhandari, Mohit, et al.
Publicado: (2009) -
LiPLike: towards gene regulatory network predictions of high certainty
por: Magnusson, Rasmus, et al.
Publicado: (2020) -
Opening the Black Box: the Relationship between Neural Networks and Linear Discriminant Functions
por: Kemp, Roger A., et al.
Publicado: (1997)